The Dreams That Stuff is Made of

Home > Science > The Dreams That Stuff is Made of > Page 12
The Dreams That Stuff is Made of Page 12

by Stephen Hawking


  From this period also dates an investigation by Bjerrum on infrared absorption bands, which, although it had no direct bearing on atomic structure, proved significant for the development of the quantum theory. He directed attention to the fact that the rotation of the molecules in a gas might be investigated by means of the changes in certain absorption lines with temperature. At the same time he emphasized the fact that the effect should not consist of a continuous widening of the lines such as might be expected from classical theory, which imposed no restrictions on the molecular rotations, but in accordance with the quantum theory he predicted that the lines should be split up into a number of components, corresponding to a sequence of distinct possibilities of rotation. This prediction was confirmed a few years later by Eva von Bahr, and the phenomenon may still be regarded as one of the most striking evidences of the reality of the quantum theory, even though from our present point of view the original explanation has undergone a modification in essential details.

  The quantum theory of atomic constitution

  The question of further development of the quantum theory was in the meantime placed in a new light by Rutherford’s discovery of the atomic nucleus (1911). As we have already seen, this discovery made it quite clear that by classical conceptions alone it was quite impossible to understand the most essential properties of atoms. One was therefore led to seek for a formulation of the principles of the quantum theory that could immediately account for the stability in atomic structure and the properties of the radiation sent out from atoms, of which the observed properties of substances bear witness. Such a formulation was proposed (1913) by the present lecturer in the form of two postulates, which may be stated as follows:(1) Among the conceivably possible states of motion in an atomic system there exist a number of so-called stationary states which, in spite of the fact that the motion of the particles in these states obeys the laws of classical mechanics to a considerable extent, possess a peculiar, mechanically unexplainable stability, of such a sort that every permanent change in the motion of the system must consist in a complete transition from one stationary state to another.

  (2) While in contradiction to the classical electromagnetic theory no radiation takes place from the atom in the stationary states themselves, a process of transition between two stationary states can be accompanied by the emission of electromagnetic radiation, which will have the same properties as that which would be sent out according to the classical theory from an electrified particle executing an harmonic vibration with constant frequency. This frequency v has, however, no simple relation to the motion of the particles of the atom, but is given by the relationhν = Eʹ − E” ,

  where h is Planck’s constant, and Eʹ and E” are the values of the energy of the atom in the two stationary states that form the initial and final state of the radiation process. Conversely, irradiation of the atom with electromagnetic waves of this frequency can lead to an absorption process, whereby the atom is transformed back from the latter stationary state to the former.

  While the first postulate has in view the general stability of the atom, the second postulate has chiefly in view the existence of spectra with sharp lines. Furthermore, the quantum-theory condition entering in the last postulate affords a starting-point for the interpretation of the laws of series spectra.

  The most general of these laws, the combination principle enunciated by Ritz, states that the frequency v for each of the lines in the spectrum of an element can be represented by the formulaν = T” − Tʹ,

  where T” and Tʹ are two so-called “spectral terms” belonging to a manifold of such terms characteristic of the substance in question.

  According to our postulates, this law finds an immediate interpretation in the assumption that the spectrum is emitted by transitions between a number of stationary states in which the numerical value of the energy of the atom is equal to the value of the spectral term multiplied by Planck’s constant. This explanation of the combination principle is seen to differ fundamentally from the usual ideas of electrodynamics, as soon as we consider that there is no simple relation between the motion of the atom and the radiation sent out. The departure of our considerations from the ordinary ideas of natural philosophy becomes particularly evident, however, when we observe that the occurrence of two spectral lines, corresponding to combinations of the same spectral term with two other different terms, implies that the nature of the radiation sent out from the atom is not determined only by the motion of the atom at the-beginning of the radiation process, but also depends on the state to which the atom is transferred by the process.

  At first glance one might, therefore, think that it would scarcely be possible to bring our formal explanation of the combination principle into direct relation with our views regarding the constitution of the atom, which, indeed, are based on experimental evidence interpreted on classical mechanics and electrodynamics. A closer investigation, however, should make it clear that a definite relation may be obtained between the spectra of the elements and the structure of their atoms on the basis of the postulates.

  The hydrogen spectrum

  The simplest spectrum we know is that of hydrogen. The frequencies of its lines may be represented with great accuracy by means of Balmer’s formula:

  where K is a constant and nʹ and n” are two integers. In the spectrum we accordingly meet a single series of spectral terms of the form K/n2, which decrease regularly with increasing term number n. In accordance with the postulates, we shall therefore assume that each of the hydrogen lines is emitted by a transition between two states belonging to a series of stationary states of the hydrogen atom in which the numerical value of the atom’s energy is equal to hK/n2.

  Following our picture of atomic structure, a hydrogen atom consists of a positive nucleus and an electron which—so far as ordinary mechanical conceptions are applicable—will with great approximation describe a periodic elliptical orbit with the nucleus at one focus. The major axis of the orbit is inversely proportional to the work necessary completely to remove the electron from the nucleus, and, in accordance with the above, this work in the stationary states is just equal to hK/n2. We thus arrive at a manifold of stationary states for which the major axis of the electron orbit takes on a series of discrete values proportional to the squares of the whole numbers. The accompanying Fig. 2 shows these relations diagrammatically. For the sake of simplicity the electron orbits in the stationary states are represented by circles, although in reality the theory places no restriction on the eccentricity of the orbit, but only determines the length of the major axis. The arrows represent the transition processes that correspond to the red and green hydrogen lines, Hα and Hβ , the frequency of which is given by means of the Balmer formula when we put n” = 2 and nʹ = 3 and 4 respectively. The transition processes are also represented which correspond to the first three lines of the series of ultraviolet lines found by Lyman in 1914, of which the frequencies are given by the formula when n is put equal to 1, as well as to the first line of the infrared series discovered some years previously by Paschen, which are given by the formula if n” is put equal to 3.

  FIG. 2

  This explanation of the origin of the hydrogen spectrum leads us quite naturally to interpret this spectrum as the manifestation of a process whereby the electron is bound to the nucleus. While the largest spectral term with term number corresponds to the final stage in the binding process, the small spectral terms that have larger values of the term number correspond to stationary states which represent the initial states of the binding process, where the electron orbits still have large dimensions, and where the work required to remove an electron from the nucleus is still small. The final stage in the binding process we may designate as the normal state of the atom, and it is distinguished from the other stationary states by the property that, in accordance with the postulates, the state of the atom can only be changed by the addition of energy whereby the electron is transferred to an orbit of larger dimensions
corresponding to an earlier stage of the binding process.

  The size of the electron orbit in the normal state calculated on the basis of the above interpretation of the spectrum agrees roughly with the value for the dimensions of the atoms of the elements that have been calculated by the kinetic theory of matter from the properties of gases. Since, however, as an immediate consequence of the stability of the stationary states that is claimed by the postulates, we must suppose that the interaction between two atoms during a collision cannot be completely described with the aid of the laws of classical mechanics, such a comparison as this cannot be carried further on the basis of such considerations as those just outlined.

  A more intimate connexion between the spectra and the atomic model has been revealed, however, by an investigation of the motion in those stationary states where the term number is large, and where the dimensions of the electron orbit and the frequency of revolution in it vary relatively little when we go from one stationary state to the next following. It was possible to show that the frequency of the radiation sent out during the transition between two stationary states, the difference of the term numbers of which is small in comparison to these numbers themselves, tended to coincide in frequency with one of the harmonic components into which the electron motion could be resolved, and accordingly also with the frequency of one of the wave trams in the radiation which would be emitted according to the laws of ordinary electrodynamics.

  The condition that such a coincidence should occur in this region where the stationary states differ but little from one another proves to be that the constant in the Balmer formula can be expressed by means of the relation

  where e and m are respectively the charge and mass of the electron, while h is Planck’s constant. This relation has been shown to hold to within the considerable accuracy with which, especially through the beautiful investigations of Millikan, the quantities e, m, and h are known.

  This result shows that there exists a connexion between the hydrogen spectrum and the model for the hydrogen atom which, on the whole, is as close as we might hope considering the departure of the postulates from the classical mechanical and electrodynamic laws. At the same time, it affords some indication of how we may perceive in the quantum theory, in spite of the fundamental character of this departure, a natural generalization of the fundamental concepts of the classical electrodynamic theory. To this most important question we shall return later, but first we will discuss how the interpretation of the hydrogen spectrum on the basis of the postulates has proved suitable in several ways, for elucidating the relation between the properties of the different elements.

  Relationships between the elements

  The discussion above can be applied immediately to the process whereby an electron is bound to a nucleus with any given charge. The calculations show that, in the stationary state corresponding to a given value of the number n, the size of the orbit will be inversely proportional to the nuclear charge, while the work necessary to remove an electron will be directly proportional to the square of the nuclear charge. The spectrum that is emitted during the binding of an electron by a nucleus with charge N times that of the hydrogen nucleus can therefore be represented by the formula:

  If in this formula we put N = 2, we get a spectrum which contains a set of lines in the visible region which was observed many years ago in the spectrum of certain stars. Rydberg assigned these lines to hydrogen because of the close analogy with the series of lines represented by the Balmer formula. It was never possible to produce these lines in pure hydrogen, but just before the theory for the hydrogen spectrum was put forward, Fowler succeeded in observing the series in question by sending a strong discharge through a mixture of hydrogen and helium. This investigator also assumed that the lines were hydrogen lines, because there existed no experimental evidence from which it might be inferred that two different substances could show properties resembling each other so much as the spectrum in question and that of hydrogen. After the theory was put forward, it became clear, however, that the observed lines must belong to a spectrum of helium, but that they were not like the ordinary helium spectrum emitted from the neutral atom. They came from an ionized helium atom which consists of a single electron moving about a nucleus with double charge. In this way there was brought to light a new feature of the relationship between the elements, which corresponds exactly with our present ideas of atomic structure, according to which the physical and chemical properties of an element depend in the first instance only on the electric charge of the atomic nucleus.

  Soon after this question was settled the existence of a similar general relationship between the properties of the elements was brought to light by Moseley’s well-known investigations on the characteristic X-ray spectra of the elements, which was made possible by Laue’s discovery of the interference of X-rays in crystals and the investigations of W. H. and W. L. Bragg on this subject. It appeared, in fact, that the X-ray spectra of the different elements possessed a much simpler structure and a much greater mutual resemblance than their optical spectra. In particular, it appeared that the spectra changed from element to element in a manner that corresponded closely to the formula given above for the spectrum emitted during the binding of an electron to a nucleus, provided N was put equal to the atomic number of the element concerned. This formula was even capable of expressing, with an approximation that could not be without significance, the frequencies of the strongest X-ray lines, if small whole numbers were substituted for nʹ and n”.

  This discovery was of great importance in several respects. In the first place, the relationship between the X-ray spectra of different elements proved so simple that it became possible to fix without ambiguity the atomic number for all known substances, and in this way to predict with certainty the atomic number of all such hitherto unknown elements for which there is a place in the natural system. Fig. 3 shows how the square root of the frequency for two characteristic X-ray lines depends on the atomic number. These lines belong to the group of so-called K-lines, which are the most penetrating of the characteristic rays. With very close approximation the points lie on straight lines, and the fact that they do so is conditioned not only by our taking account of known elements, but also by our leaving an open place between molybdenum (42) and ruthenium (44), just as in Mendeleev’s original scheme of the natural system of the elements.

  FIG. 3

  Further, the laws of X-ray spectra provide a confirmation of the general theoretical conceptions, both with regard to the constitution of the atom and the ideas that have served as a basis for the interpretation of spectra. Thus the similarity between X-ray spectra and the spectra emitted during the binding of a single electron to a nucleus may be simply interpreted from the fact that the transitions between stationary states with which we are concerned in X-ray spectra are accompanied by changes in the motion of an electron in the inner part of the atom, where the influence of the attraction of the nucleus is very great compared with the repulsive forces of the other electrons.

  The relations between other properties of the elements are of a much more complicated character, which originates in the fact that we have to do with processes concerning the motion of the electrons in the outer part of the atom, where the forces that the electrons exert on one another are of the same order of magnitude as the attraction towards the nucleus, and where, therefore, the details of the interaction of the electrons play an important part. A characteristic example of such a case is afforded by the spatial extension of the atoms of the elements. Lothar Meyer himself directed attention to the characteristic periodic change exhibited by the ratio of the atomic weight to the density, the so-called atomic volume, of the elements in the natural system. An idea of these facts is given by Fig. 4, in which the atomic volume is represented as a function of the atomic number. A greater difference between this and the previous figure could scarcely be imagined. While the X-ray spectra vary uniformly with the atomic number, the atomic volumes show a characteristic
periodic change which corresponds exactly to the change in the chemical properties of the elements.

  FIG. 4

  Ordinary optical spectra behave in an analogous way. In spite of the dissimilarity between these spectra, Rydberg succeeded in tracing a certain general relationship between the hydrogen spectrum and other spectra. Even though the spectral lines of the elements with higher atomic number appear as combinations of a more complicated manifold of spectral terms which is not so simply co-ordinated with a series of whole numbers, still the spectral terms can be arranged in series each of which shows a strong similarity to the series of terms in the hydrogen spectrum. This similarity appears in the fact that the terms in each series can, as Rydberg pointed out, be very accurately represented by the formula K/(n + α)2, where K is the same constant that occurs in the hydrogen spectrum, often called the Rydberg constant, while n is the term number, and α a constant which is different for the different series.

  This relationship with the hydrogen spectrum leads us immediately to regard these spectra as the last step of a process whereby the neutral atom is built up by the capture and binding of electrons to the nucleus, one by one. In fact, it is clear that the last electron captured, so long as it is in that stage of the binding process in which its orbit is still large compared to the orbits of the previously bound electrons, will be subjected to a force from the nucleus and these electrons, that differs but little from the force with which the electron in the hydrogen atom is attracted towards the nucleus while it is moving in an orbit of corresponding dimensions.

 

‹ Prev