The Selfish Gene

Home > Nonfiction > The Selfish Gene > Page 34
The Selfish Gene Page 34

by Richard Dawkins


  One way of sorting this whole matter out is to use the terms 'replicator' and 'vehicle'. The fundamental units of natural selection, the basic things that survive or fail to survive, that form lineages of identical copies with occasional random mutations, are called replicators. DNA molecules are replicators. They generally, for reasons that we shall come to, gang together into large communal survival machines or 'vehicles'. The vehicles that we know best are individual bodies like our own. A body, then, is not a replicator; it is a vehicle. I must emphasize this, since the point has been misunderstood. Vehicles don't replicate themselves; they work to propagate their replicators. Replicators don't behave, don't perceive the world, don't catch prey or run away from predators; they make vehicles that do all those things. For many purposes it is convenient for biologists to focus their attention at the level of the vehicle. For other purposes it is convenient for them to focus their attention at the level of the replicator. Gene and individual organism are not rivals for the same starring role in the Darwinian drama. They are cast in different, complementary and in many respects equally important roles, the role of replicator and the role of vehicle. The replicator/vehicle terminology is helpful in various ways. For instance it clears up a tiresome controversy over the level at which natural selection acts. Superficially it might seem logical to place 'individual selection' on a sort of ladder of levels of selection, halfway between the 'gene selection' advocated in Chapter 3 and the 'group selection' criticized in Chapter 7. 'Individual selection' seems vaguely to be a middle way between two extremes, and many biologists and philosophers have been seduced into this facile path and treated it as such. But we can now see that it isn't like that at all. We can now see that the organism and the group of organisms are true rivals for the vehicle role in the story, but neither of them is even a candidate for the replicator role. The controversy between 'individual selection' and 'group selection' is a real controversy between alternative vehicles. The controversy between individual selection and gene selection isn't a controversy at all, for gene and organism are candidates for different, and complementary, roles in the story, the replicator and the vehicle.

  The rivalry between individual organism and group of organisms for the vehicle role, being a real rivalry, can be settled. As it happens the outcome, in my view, is a decisive victory for the individual organism. The group is too wishy-washy an entity. A herd of deer, a pride of lions or a pack of wolves has a certain rudimentary coherence and unity of purpose. But this is paltry in comparison to the coherence and unity of purpose of the body of an individual lion, wolf, or deer. That this is true is now widely accepted, but why is it true? Extended phenotypes and parasites can again help us.

  We saw that when the genes of a parasite work together with each other, but in opposition to the genes of the host (which all work together with each other), it is because the two sets of genes have different methods of leaving the shared vehicle, the host's body. Snail genes leave the shared vehicle via snail sperm and eggs. Because all snail genes have an equal stake in every sperm and every egg, because they all participate in the same unpartisan meiosis, they work together for the common good, and therefore tend to make the snail body a coherent, purposeful vehicle. The real reason why a fluke is recognizably separate from its host, the reason why it doesn't merge its purposes and its identity with the purposes and identity of the host, is that the fluke genes don't share the snail genes' method of leaving the shared vehicle, and don't share in the snail's meiotic lottery-they have a lottery of their own. Therefore, to that extent and that extent only, the two vehicles remain separated as a snail and a recognizably distinct fluke inside it. If fluke genes were passed on in snail eggs and sperms, the two bodies would evolve to become as one flesh. We mightn't even be able to tell that there ever had been two vehicles.

  'Single' individual organisms such as ourselves are the ultimate embodiment of many such mergers. The group of organisms-the flock of birds, the pack of wolves-does not merge into a single vehicle, precisely because the genes in the flock or the pack do not share a common method of leaving the present vehicle. To be sure, packs may bud off daughter packs. But the genes in the parent pack don't pass to the daughter pack in a single vessel in which all have an equal share. The genes in a pack of wolves don't all stand to gain from the same set of events in the future. A gene can foster its own future welfare by favouring its own individual wolf, at the expense of other individual wolves. An individual wolf, therefore, is a vehicle worthy of the name. A pack of wolves is not. Genetically speaking, the reason for this is that all the cells except the sex cells in a wolf's body have the same genes, while, as for the sex cells, all the genes have an equal chance of being in each one of them. But the cells in a pack of wolves do not have the same genes, nor do they have the same chance of being in the cells of sub-packs that are budded off. They have everything to gain by struggling against rivals in other wolf bodies (although the fact that a wolf-pack is likely to be a kin group will mitigate the struggle).

  The essential quality that an entity needs, if it is to become an effective gene vehicle, is this. It must have an impartial exit channel into the future, for all the genes inside it. This is true of an individual wolf. The channel is the thin stream of sperms, or eggs, which it manufactures by meiosis. It is not true of the pack of wolves. Genes have something to gain from selfishly promoting the welfare of their own individual bodies, at the expense of other genes in the wolf pack. A bee-hive, when it swarms, appears to reproduce by broad-fronted budding, like a wolf pack. But if we look more carefully we find that, as far as the genes are concerned, their destiny is largely shared. The future of the genes in the swarm is, at least to a large extent, lodged in the ovaries of one queen. This is why-it is just another way of expressing the message of earlier chapters-the bee colony looks and behaves like a truly integrated single vehicle.

  Everywhere we find that life, as a matter of fact, is bundled into discrete, individually purposeful vehicles like wolves and bee-hives. But the doctrine of the extended phenotype has taught us that it needn't have been so. Fundamentally, all that we have a right to expect from our theory is a battleground of replicators, jostling, jockeying, fighting for a future in the genetic hereafter. The weapons in the fight are phenotypic effects, initially direct chemical effects in cells but eventually feathers and fangs and even more remote effects. It undeniably happens to be the case that these phenotypic effects have largely become bundled up into discrete vehicles, each with its genes disciplined and ordered by the prospect of a shared bottleneck of sperms or eggs funnelling them into the future. But this is not a fact to be taken for granted. It is a fact to be questioned and wondered at in its own right. Why did genes come together into large vehicles, each with a single genetic exit route? Why did genes choose to gang up and make large bodies for themselves to live in? In The Extended Phenotype I attempt to work out an answer to this difficult problem. Here I can sketch only a part of that answer-although, as might be expected after seven years, I can also now take it a little further.

  I shall divide the question up into three. Why did genes gang up in cells? Why did cells gang up in many-celled bodies? And why did bodies adopt what I shall call a 'bottlenecked' life cycle?

  First then, why did genes gang up in cells? Why did those ancient replicators give up the cavalier freedom of the primeval soup and take to swarming in huge colonies? Why do they cooperate? We can see part of the answer by looking at how modern DNA molecules cooperate in the chemical factories that are living cells. DNA molecules make proteins. Proteins work as enzymes, catalysing particular chemical reactions. Often a single chemical reaction is not sufficient to synthesize a useful end-product. In a human pharmaceutical factory the synthesis of a useful chemical needs a production line. The starting chemical cannot be transformed directly into the desired end-product. A series of intermediates must be synthesized in strict sequence. Much of a research chemist's ingenuity goes into devising pathways of feasible intermediate
s between starting chemicals and desired end-products. In the same way single enzymes in a living cell usually cannot, on their own, achieve the synthesis of a useful end-product from a given starting chemical. A whole set of enzymes is necessary, one to catalyse the transformation of the raw material into the first intermediate, another to catalyse the transformation of the first intermediate into the second, and so on.

  Each of these enzymes is made by one gene. If a sequence of six enzymes is needed for a particular synthetic pathway, all six genes for making them must be present. Now it is quite likely that there are two alternative pathways for arriving at that same end-product, each needing six different enzymes, and with nothing to choose between the two of them. This kind of thing happens in chemical factories. Which pathway is chosen may be historical accident, or it may be a matter of more deliberate planning by chemists. In nature's chemistry the choice will never, of course, be a deliberate one. Instead it will come about through natural selection. But how can natural selection see to it that the two pathways are not mixed, and that cooperating groups of compatible genes emerge? In very much the same way as I suggested with my analogy of the German and English rowers (Chapter 5). The important thing is that a gene for a stage in pathway 1 will flourish in the presence of genes for other stages in pathway 1, but not in the presence of pathway 2 genes. If the population already happens to be dominated by genes for pathway 1, selection will favour other genes for pathway 1, and penalize genes for pathway 2. And vice versa. Tempting as it is, it is positively wrong to speak of the genes for the six enzymes of pathway 2 being selected 'as a group'. Each one is selected as a separate selfish gene, but it flourishes only in the presence of the right set of other genes.

  Nowadays this cooperation between genes goes on within cells. It must have started as rudimentary cooperation between self-replicating molecules in the primeval soup (or whatever primeval medium there was). Cell walls perhaps arose as a device to keep useful chemicals together and stop them leaking away. Many of the chemical reactions in the cell actually go on in the fabric of membranes; a membrane acts as a combined conveyor-belt and test-tube rack. But cooperation between genes did not stay limited to cellular biochemistry. Cells came together (or failed to separate after cell division) to form many-celled bodies.

  This brings us to the second of my three questions. Why did cells gang together; why the lumbering robots? This is another question about cooperation. But the domain has shifted from the world of molecules to a larger scale. Many-celled bodies outgrow the microscope. They can even become elephants or whales. Being big is not necessarily a good thing: most organisms are bacteria and very few are elephants. But when the ways of making a living that are open to small organisms have all been filled, there are still prosperous livings to be made by larger organisms. Large organisms can eat smaller ones, for instance, and can avoid being eaten by them.

  The advantages of being in a club of cells don't stop with size. The cells in the club can specialize, each thereby becoming more efficient at performing its particular task. Specialist cells serve other cells in the club and they also benefit from the efficiency of other specialists. If there are many cells, some can specialize as sensors to detect prey, others as nerves to pass on the message, others as stinging cells to paralyse the prey, muscle cells to move tentacles and catch the prey, secretory cells to dissolve it and yet others to absorb the juices. We must not forget that, at least in modern bodies like our own, the cells are a clone. All contain the same genes, although different genes will be turned on in the different specialist cells. Genes in each cell type are directly benefiting their own copies in the minority of cells specialized for reproduction, the cells of the immortal germ line.

  So, to the third question. Why do bodies participate in a 'bottle-necked' life cycle?

  To begin with, what do I mean by bottlenecked? No matter how many cells there may be in the body of an elephant, the elephant began life as a single cell, a fertilized egg. The fertilized egg is a narrow bottleneck which, during embryonic development, widens out into the trillions of cells of an adult elephant. And no matter how many cells, of no matter how many specialized types, cooperate to perform the unimaginably complicated task of running an adult elephant, the efforts of all those cells converge on the final goal of producing single cells again-sperms or eggs. The elephant not only has its beginning in a single cell, a fertilized egg. Its end, meaning its goal or end-product, is the production of single cells, fertilized eggs of the next generation. The life cycle of the broad and bulky elephant both begins and ends with a narrow bottleneck. This bottlenecking is characteristic of the life cycles of all many-celled animals and most plants. Why? What is its significance? We cannot answer this without considering what life might look like without it.

  It will be helpful to imagine two hypothetical species of seaweed called bottle-wrack and splurge-weed. Splurge-weed grows as a set of straggling, amorphous branches in the sea. Every now and then branches break off and drift away. These breakages can occur anywhere in the plants, and the fragments can be large or small. As with cuttings in a garden, they are capable of growing just like the original plant. This shedding of parts is the species's method of reproducing. As you will notice, it isn't really different from its method of growing, except that the growing parts become physically detached from one another.

  Bottle-wrack looks the same and grows in the same straggly way. There is one crucial difference, however. It reproduces by releasing single-celled spores which drift off in the sea and grow into new plants. These spores are just cells of the plant like any others. As in the case of splurge-weed, no sex is involved. The daughters of a plant consist of cells that are clone-mates of the cells of the parent plant. The only difference between the two species is that splurge-weed reproduces by hiving off chunks of itself consisting of indeterminate numbers of cells, while bottle-wrack reproduces by hiving off chunks of itself always consisting of single cells.

  By imagining these two kinds of plant, we have zeroed in on the crucial difference between a bottlenecked and an unbottlenecked life cycle. Bottle-wrack reproduces by squeezing itself, every generation, through a single-celled bottleneck. Splurge-weed just grows and breaks in two. It hardly can be said to possess discrete 'generations', or to consist of discrete 'organisms', at all. What about bottle-wrack? I'll spell it out soon, but we can already see an inkling of the answer. Doesn't bottle-wrack already seem to have a more discrete, 'organismy' feel to it?

  Splurge-weed, as we have seen, reproduces by the same process as it grows. Indeed it scarcely reproduces at all. Bottle-wrack, on the other hand, makes a clear separation between growth and reproduction. We may have zeroed in on the difference, but so what? What is the significance of it? Why does it matter? I have thought a long time about this and I think I know the answer. (Incidentally, it was harder to work out that there was a question than to think of the answer!) The answer can be divided into three parts, the first two of which have to do with the relationship between evolution and embryonic development.

  First, think about the problem of evolving a complex organ from a simpler one. We don't have to stay with plants, and for this stage of the argument it might be better to switch to animals because they have more obviously complicated organs. Again there is no need to think in terms of sex; sexual versus asexual reproduction is a red herring here. We can imagine our animals reproducing by sending off nonsexual spores, single cells that, mutations aside, are genetically identical to one another and to all the other cells in the body.

  The complicated organs of an advanced animal like a human or a woodlouse have evolved by gradual degrees from the simpler organs of ancestors. But the ancestral organs did not literally change themselves into the descendant organs, like swords being beaten into ploughshares. Not only did they not. The point I want to make is that in most cases they could not. There is only a limited amount of change that can be achieved by direct transformation in the 'swords to ploughshares' manner. Really rad
ical change can be achieved only by going 'back to the drawing board', throwing away the previous design and starting afresh. When engineers go back to the drawing board and create a new design, they do not necessarily throw away the ideas from the old design. But they don't literally try to deform the old physical object into the new one. The old object is too weighed down with the clutter of history. Maybe you can beat a sword into a ploughshare, but try 'beating' a propellor engine into a jet engine! You can't do it. You have to discard the propellor engine and go back to the drawing board.

  Living things, of course, were never designed on drawing boards. But they do go back to fresh beginnings. They make a clean start in every generation. Every new organism begins as a single cell and grows anew. It inherits the ideas of ancestral design, in the form of the DNA program, but it does not inherit the physical organs of its ancestors. It does not inherit its parent's heart and remould it into a new (and possibly improved) heart. It starts from scratch, as a single cell, and grows a new heart, using the same design program as its parent's heart, to which improvements may be added. You see the conclusion I am leading up to. One important thing about a 'bottlenecked' life cycle is that it makes possible the equivalent of going back to the drawing board.

  Bottlenecking of the life cycle has a second, related consequence. It provides a 'calendar' that can be used to regulate the processes of embryology. In a bottlenecked life cycle, every fresh generation marches through approximately the same parade of events. The organism begins as a single cell. It grows by cell division. And it reproduces by sending out daughter cells. Presumably it eventually dies, but that is less important than it seems to us mortals; as far as this discussion is concerned the end of the cycle is reached when the present organism reproduces and a new generation's cycle begins. Although in theory the organism could reproduce at any time during its growth phase, we can expect that eventually an optimum time for reproduction would emerge. Organisms that released spores when they were too young or too old would end up with fewer descendants than rivals that built up their strength and then released a massive number of spores when in the prime of life.

 

‹ Prev