Book Read Free

The Neuroscience of Intelligence

Page 29

by Richard J Haier


  Synesthesia.

  A rare neurological condition where sensory perception is mixed up. For example, hearing sounds may produce visual colors.

  Termites.

  The slang term for the participants in Lewis Terman’s longitudinal study of high-IQ individuals.

  Test of non-verbal intelligence (TONI).

  A non-verbal test of intelligence designed for children.

  Transcranial alternating current stimulation (tACS).

  A non-invasive technique for applying weak alternating electrical current through the skull to stimulate brain areas.

  Transcranial direct current stimulation (tDCS).

  A non-invasive technique for applying weak constant electrical current through the skull to stimulate brain areas.

  Transcranial magnetic stimulation (TMS).

  A procedure that uses magnetic fields placed over the scalp to stimulate or suppress brain activity.

  Val66Met.

  A gene associated with BDNF.

  Voxel.

  The smallest unit in a neuroimage. A three-dimensional pixel.

  Voxel-based morphometry (VBM).

  A technique for measuring brain characteristics at the level of individual voxels.

  Wechsler Adult Intelligence Scale (WAIS).

  A widely used standardized battery of mental tests that estimates intelligence relative to other people with an IQ score.

  Wechsler Intelligence Scale for Children (WISC).

  A version of the WAIS especially designed and normed for children.

  References

  Ackerman, P. L., Beier, M. E. & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131, 30–60.

  Alkire, M. T. & Haier, R. J. (2001). Correlating in vivo anaesthetic effects with ex vivo receptor density data supports a GABAergic mechanism of action for propofol, but not for isoflurane. British Journal of Anaesthesiology, 86, 618–626.

  Alkire, M. T., Haier, R. J., Barker, S. J., Shah, N. K., Wu, J. C. & Kao, Y. J. (1995). Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology, 82, 393–403; discussion 27A.

  Alkire, M. T., Haier, R. J. & Fallon, J. H. (2000). Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Consciousness and Cognition, 9, 370–386.

  Alkire, M. T., Pomfrett, C. J. D., Haier, R. J., Gianzero, M. V., Chan, C. M., Jacobsen, B. P. & Fallon, J. H. (1999). Functional brain imaging during anesthesia in humans – effects of halothane on global and regional cerebral glucose metabolism. Anesthesiology, 90, 701–709.

  Anderson, D. J. (2012). Optogenetics, sex, and violence in the brain: implications for psychiatry. Biological Psychiatry, 71, 1081–1089.

  Anderson, J. W., Johnstone, B. M. & Remley, D. T. (1999). Breast-feeding and cognitive development: a meta-analysis. American Journal of Clinical Nutrition, 70, 525–535.

  Andreasen, N. C., Flaum, M., Swayze, V., O’Leary, D. S., Alliger, R., Cohen, G., Ehrhardt, J. & Yuh, W. T. (1993). Intelligence and brain structure in normal individuals. American Journal of Psychiatry, 150, 130–134.

  Ángeles Quiroga, M., Escorial, S., Román, F. J., Morillo, D., Jarabo, A., Privado, J., Hernández, M., Gallego, B. & Colom, R. (2015). Can we reliably measure the general factor of intelligence (g) through commercial video games? Yes, we can! Intelligence, 53, 1–7.

  Arden, R. (2003). An Arthurian romance. In H. Nyborg (Ed.), The Scientific Study of General Intelligence, Oxford: Pergamon Press.

  Arden, R., Chavez, R. S., Grazioplene, R. & Jung, R. E. (2010). Neuroimaging creativity: a psychometric view. Behavior and Brain Research, 214, 143–156.

  Arden, R., Luciano, M., Deary, I. J., Reynolds, C. A., Pedersen, N. L., Plassman, B. L., McGue, M., Christensen, K. & Visscher, P. M.(2015). The association between intelligence and lifespan is mostly genetic. International Journal of Epidemiology, 45, 178–185.

  Asbury, K. & Plomin, R. (2014). G is for Genes: The Impact of Genetics on Education and Achievement, Chichester: Wiley-Blackwell.

  Asbury, K., Wachs, T. D. & Plomin, R. (2005). Environmental moderators of genetic influence on verbal and nonverbal abilities in early childhood. Intelligence, 33, 643–661.

  Ashburner, J. & Friston, K. (1997). Multimodal image coregistration and partitioning – a unified framework. Neuroimage, 6, 209–217.

  Ashburner, J. & Friston, K. J. (2000). Voxel-based morphometry – the methods. Neuroimage, 11, 805–821.

  Aston-Jones, G. & Deisseroth, K. (2013). Recent advances in optogenetics and pharmacogenetics. Brain Research, 1511, 1–5.

  Atherton, M., Zhuang, J. C., Bart, W. M., Hu, X. P. & He, S. (2003). A functional MRI study of high-level cognition. I. The game of chess. Cognitive Brain Research, 16, 26–31.

  Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M. & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: a meta-analysis. Psychonomic Bulletin and Review, 22, 366–377.

  Bagot, K. S. & Kaminer, Y. (2014). Efficacy of stimulants for cognitive enhancement in non-attention deficit hyperactivity disorder youth: a systematic review. Addiction, 109, 547–557.

  Barbey, A. K., Colom, R., Paul, E., Forbes, C., Krueger, F., Goldman, D. & Grafman, J. (2014). Preservation of general intelligence following traumatic brain injury: contributions of the Met66 brain-derived neurotrophic factor. PLoS ONE, 9, e88733.

  Barnett, W. S. & Hustedt, J. T. (2005). Head start’s lasting benefits. Infants and Young Children, 18, 16–24.

  Bassett, D. S., Yang, M., Wymbs, N. F. & Grafton, S. T. (2015). Learning-induced autonomy of sensorimotor systems. Nature Neuroscience, 18, 744–751.

  Basso, A., De Renzi, E., Faglioni, P., Scotti, G. & Spinnler, H. (1973). Neuropsychological evidence for the existence of cerebral areas critical to the performance of intelligence tasks. Brain, 96, 715–28.

  Basten, U., Hilger, K. & Fiebach, C. J. (2015). Where smart brains are different: a quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence, 51, 10–27.

  Basten, U., Stelzel, C. & Fiebach, C. J. (2013). Intelligence is differentially related to neural effort in the task-positive and the task-negative brain network. Intelligence, 41, 517–528.

  Bates, T. C., Lewis, G. J. & Weiss, A. (2013). Childhood socioeconomic status amplifies genetic effects on adult intelligence. Psychological Science, 24, 2111–2116.

  Batty, G. D., Deary, I. J. & Gottfredson, L. S. (2007). Premorbid (early life) IQ and later mortality risk: systematic review. Annals of Epidemiology, 17, 278–288.

  Beaty, R. E. (2015). The neuroscience of musical improvisation. Neuroscience and Biobehavioral Reviews, 51, 108–117.

  Bejjanki, V. R., Zhang, R., Li, R., Pouget, A., Green, C. S., Lu, Z. L. & Bavelier, D. (2014). Action video game play facilitates the development of better perceptual templates. Proceedings of the National Academy of Sciences of the United States of America, 111, 16961–16966.

  Bengtsson, S. L., Csikszentmihalyi, M. & Ullen, F. (2007). Cortical regions involved in the generation of musical structures during improvisation in pianists. Journal of Cognitive Neuroscience, 19, 830–842.

  Benyamin, B., Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M. J., et al. (2014). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular Psychiatry, 19, 253–258.

  Berkowitz, A. L. & Ansari, D. (2010). Expertise-related deactivation of the right temporoparietal junction during musical improvisation. Neuroimage, 49, 712–719.

  Bishop, S. J., Fossella, J., Croucher, C. J. & Duncan, J. (2008). COMT val158met genotype affects recruitment of neural mechanisms supporting fluid intelligence. Cerebral Cortex, 18, 2132–2140.

  Bogg, T. & Lasecki, L. (2015). Reliable gains? Evidence for substantially underpowered designs in studies of working memory training transfer to fluid intellig
ence. Frontiers in Psychology, 5, 1589.

  Bohlken, M. M., Brouwer, R. M., Mandl, R. C., Van Haren, N. E., Brans, R. G., Van Baal, G. C., et al. (2014). Genes contributing to subcortical volumes and intellectual ability implicate the thalamus. Human Brain Mapping, 35, 2632–2642.

  Boivin, M. J., Giordani, B., Berent, S., Amato, D. A., Lehtinen, S., Koeppe, R. A., Buchtel, H. A., Foster, N. L. & Kuhl, D. E. (1992). Verbal fluency and positron emission tomographic mapping of regional cerebral glucose metabolism. Cortex, 28, 231–239.

  Bouchard, T. J. (2009). Genetic influence on human intelligence (Spearman’s g): how much? Annals of Human Biology, 36, 527–544.

  Bouchard, T. J., Jr. (1998). Genetic and environmental influences on adult intelligence and special mental abilities. Human Biology, 70, 257–279.

  Bouchard, T. J., & McGue, M. (1981). Familial studies of intelligence: a review. Science, 212, 1055–1059.

  Brans, R. G. H., Kahn, R. S., Schnack, H. G., Van Baal, G. C. M., Posthuma, D., Van Haren, N. E. M., et al. (2010). Brain plasticity and intellectual ability are influenced by shared genes. Journal of Neuroscience, 30, 5519–5524.

  Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, Leipzig: Barth.

  Burgaleta, M. & Colom, R. (2008). Short-term storage and mental speed account for the relationship between working memory and fluid intelligence. Psicothema, 20, 780–785.

  Burgaleta, M., MacDonald, P. A., Martinez, K., Roman, F. J., Alvarez-Linera, J., Gonzalez, A. R., Karama, S. & Colom, R. (2014). Subcortical regional morphology correlates with fluid and spatial intelligence. Human Brain Mapping, 35, 1957–1968.

  Burt, C. (1943). Ability and income. British Journal of Educational Psychology, 13, 83–98.

  Burt, C. (1955). The evidence for the concept of intelligence. British Journal of Educational Psychology, 25, 158–177.

  Burt, C. (1966). The genetic determination of differences in intelligence – a study of monozygotic twins reared together and apart. British Journal of Psychology, 57, 137–153.

  Cabeza, R. & Nyberg, L. (2000). Imaging cognition II: an empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47.

  Cajal, R. S. (1924). Pensamientos Escogidos [Chosen Thoughts], Madrid: Cuadernos Literarios.

  Campbell, F. A., Pungello, E., Miller-Johnson, S., Burchinal, M. & Ramey, C. T. (2001). The development of cognitive and academic abilities: growth curves from an early childhood educational experiment. Developmental Psychology, 37, 231–242.

  Cardoso-Leite, P. & Bavelier, D. (2014). Video game play, attention, and learning: how to shape the development of attention and influence learning? Current Opinions in Neurology, 27, 185–191.

  Cattell, R. B. (1971). Abilities: Their Structure, Growth, and Action, Boston: Houghton Mifflin.

  Cattell, R. B. (1987). Intelligence: Its Structure, Growth, and Action, Amsterdam: Elsevier.

  Ceci, S. J. (1991). How much does schooling influence general intelligence and its cognitive components – a reassessment of the evidence. Developmental Psychology, 27, 703–722.

  Ceci, S. J. & Williams, W. M. (1997). Schooling, intelligence, and income. American Psychologist, 52, 1051–1058.

  Chabris, C. F. (1999). Prelude or requiem for the “Mozart effect”? Nature, 400, 826–827.

  Chabris, C. F., Hebert, B. M., Benjamin, D. J., Beauchamp, J., Cesarini, D., Van Der Loos, M., et al. (2012). Most reported genetic associations with general intelligence are probably false positives. Psychological Science, 23, 1314–1323.

  Champagne, F. A. & Curley, J. P. (2009). Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neuroscience and Biobehavioral Reviews, 33, 593–600.

  Chiang, M. C., Barysheva, M., McMahon, K. L., De Zubicaray, G. I., Johnson, K., Montgomery, G. W., et al. (2012). Gene network effects on brain microstructure and intellectual performance identified in 472 twins. Journal of Neuroscience, 32, 8732–8745.

  Chiang, M. C., Barysheva, M., Shattuck, D. W., Lee, A. D., Madsen, S. K., Avedissian, C., et al. (2009). Genetics of brain fiber architecture and intellectual performance. Journal of Neuroscience, 29, 2212–2224.

  Chiang, M. C., Barysheva, M., Toga, A. W., Medland, S. E., Hansell, N. K., James, M. R., et al. (2011a). BDNF gene effects on brain circuitry replicated in 455 twins. Neuroimage, 55, 448–454.

  Chiang, M. C., McMahon, K. L., De Zubicaray, G. I., Martin, N. G., Hickie, I., Toga, A. W., Wright, M. J. & Thompson, P. M. (2011b). Genetics of white matter development: a DTI study of 705 twins and their siblings aged 12 to 29. Neuroimage, 54, 2308–2317.

  Choi, Y. Y., Shamosh, N. A., Cho, S. H., DeYoung, C. G., Lee, M. J., Lee, J. M., Kim, S. I., Cho, Z. H., Kim, K., Gray, J. R. & Lee, K. H. (2008). Multiple bases of human intelligence revealed by cortical thickness and neural activation. Journal of Neuroscience, 28, 10323–10329.

  Chooi, W. T. & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40, 531–542.

  Chugani, H. T., Phelps, M. E. & Mazziotta, J. C. (1987). Positron emission tomography study of human brain functional development. Annals of Neurology, 22, 487–497.

  Clark, V. P., Coffman, B. A., Mayer, A. R., Weisend, M. P., Lane, T. D., Calhoun, V. D., Raybourn, E. M., Garcia, C. M. & Wassermann, E. M. (2012). TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage, 59, 117–128.

  Coffman, B. A., Clark, V. P. & Parasuraman, R. (2014). Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage, 85(Pt 3), 895–908.

  Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A. & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32, 8988–8999.

  Colom, R., Abad, F. J., Quiroga, M. A., Shih, P. C. & Flores-Mendoza, C. (2008). Working memory and intelligence are highly related constructs, but why? Intelligence, 36, 584–606.

  Colom, R. & Flores-Mendoza, C. E. (2007). Intelligence predicts scholastic achievement irrespective of SES factors: evidence from Brazil. Intelligence, 35, 243–251.

  Colom, R., Jung, R. E. & Haier, R. J. (2006a). Distributed brain sites for the g-factor of intelligence. Neuroimage, 31, 1359–1365.

  Colom, R., Jung, R. E. (2006b). Finding the g-factor in brain structure using the method of correlated vectors. Intelligence, 34, 561.

  Colom, R., Jung, R. E. (2007). General intelligence and memory span: evidence for a common neuroanatomic framework. Cognitive Neuropsychology, 24, 867–878.

  Colom, R., Karama, S., Jung, R. E. & Haier, R. J. (2010). Human intelligence and brain networks. Dialogues in Clinical Neuroscience, 12, 489–501.

  Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M. & Kyllonen, P. C. (2004). Working memory is (almost) perfectly predicted by g. Intelligence, 32, 277–296.

  Colom, R., Roman, F. J., Abad, F. J., Shih, P. C., Privado, J., Froufe, M., et al. (2013). Adaptive n-back training does not improve fluid intelligence at the construct level: gains on individual tests suggest that training may enhance visuospatial processing. Intelligence, 41, 712–727.

  Conway, A. R. A., Kane, M. J. & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7, 547–552.

  Covington, H. E., 3rd, Lobo, M. K., Maze, I., Vialou, V., Hyman, J. M., Zaman, S., Laplant, Q., Mouzon, E., Ghose, S., Tamminga, C. A., Neve, R. L., Deisseroth, K. & Nestler, E. J. (2010). Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. Journal of Neuroscience, 30, 16082–16090.

  Crick, F. (1994). The Astonishing Hypothesis: The Scientific Search for the Soul, New York: Scribner, Maxwell Macmillan International.

  Curlik, D. M., 2nd, Maeng, L. Y., Agarwal, P. R. & Shors, T. J. (2013). Physical skill training increases the number of surviving new cell
s in the adult hippocampus. PLoS ONE, 8, e55850.

  Curlik, D. M., Curlik, D. M., 2nd & Shors, T. J. (2013). Training your brain: do mental and physical (MAP) training enhance cognition through the process of neurogenesis in the hippocampus? Neuropharmacology, 64, 506–514.

  Davies, G., Armstrong, N., Bis, J. C., Bressler, J., Chouraki, V., Giddaluru, S., et al. (2015). Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53949). Molecular Psychiatry, 20, 183–192.

  Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., et al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16, 996–1005.

  Davis, J. M., Searles, V. B., Anderson, N., Keeney, J., Raznahan, A., Horwood, L. J., Fergusson, D. M., Kennedy, M. A., Giedd, J. & Sikela, J. M. (2015). DUF1220 copy number is linearly associated with increased cognitive function as measured by total IQ and mathematical aptitude scores. Human Genetics, 134, 67–75.

  Deary, I. J. (2000). Looking Down on Human Intelligence: From Psychometrics to the Brain, Oxford: Oxford University Press.

  Deary, I. J., Penke, L. & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11, 201–211.

  Deary, I. J., Whiteman, M. C., Starr, J. M., Whalley, L. J. & Fox, H. C. (2004). The impact of childhood intelligence on later life: following up the Scottish Mental Surveys of 1932 and 1947. Journal of Personality and Social Psychology, 86, 130–147.

  Del Río, D., Cuesta, P., Bajo, R., García-Pacios, J., López-Higes, R., Del-Pozo, F. & Maestú, F. (2012). Efficiency at rest: magnetoencephalographic resting-state connectivity and individual differences in verbal working memory. International Journal of Psychophysiology, 86, 160–167.

  Der, G., Batty, G. D. & Deary, I. J. (2006). Effect of breast feeding on intelligence in children: prospective study, sibling pairs analysis, and meta-analysis. British Medical Journal, 333, 945.

 

‹ Prev