Book Read Free

The Science of Storytelling

Page 3

by Will Storr


  There’s no colour out there either. Atoms are colourless. All the colours we do ‘see’ are a blend of three cones that sit in the eye: red, green and blue. This makes us Homo sapiens relatively impoverished members of the animal kingdom: some birds have six cones; mantis shrimp have sixteen; bees’ eyes are able to see the electromagnetic structure of the sky. The colourful worlds they experience beggar human imagination. Even the colours we do ‘see’ are mediated by culture. Russians are raised to see two types of blue and, as a result, see eight-striped rainbows. Colour is a lie. It’s set-dressing, worked up by the brain. One theory has it that we began painting colours onto objects millions of years ago in order to identify ripe fruit. Colour helps us interact with the external world and thereby better control it.

  The only thing we’ll ever really know are those electrical pulses that are sent up by our senses. Our storytelling brain uses those pulses to create the colourful set in which to play out our lives. It populates that set with a cast of actors with goals and personalities, and finds plots for us to follow. Even sleep is no barrier to the brain’s story-making processes. Dreams feel real because they’re made of the same hallucinated neural models we live inside when awake. The sights are the same, the smells are the same, objects feel the same to the touch. Craziness happens partly because the fact-checking senses are offline, and partly because the brain has to make sense of chaotic bursts of neural activity that are the result of our state of temporary paralysis. It explains this confusion as it explains everything: by roughing together a model of the world and magicking it into a cause-and-effect story.

  One common dream has us falling off a building or tumbling down steps, a brain story that’s typically triggered to explain a ‘myoclonic jerk’, a sudden, jarring contraction of the muscles. Indeed, just like the stories we tell each other for fun, dream narratives often centre on dramatic, unexpected change. Researchers find the majority of dreams feature at least one event of threatening and unexpected change, with most of us experiencing up to five such events every night. Wherever studies have been done, from East to West, from city to tribe, dream plots reflect this. ‘The most common is being chased or attacked,’ writes story psychologist Professor Jonathan Gottschall. ‘Other universal themes include falling from a great height, drowning, being lost or trapped, being naked in public, getting injured, getting sick or dying, and being caught in a natural or manmade disaster.’

  So now we’ve discovered how reading works. Brains take information from the outside world – in whatever form they can – and turn it into models. When our eyes scan over letters in a book, the information they contain is converted into electrical pulses. The brain reads these electrical pulses and builds a model of whatever information those letters provided. So if the words on the page describe a barn door hanging on one hinge, the reader’s brain will model a barn door hanging on one hinge. They’ll ‘see’ it in their heads. Likewise, if the words describe a ten-foot wizard with his knees on back to front, the brain will model a ten-foot wizard with his knees on back to front. Our brain rebuilds the model world that was originally imagined by the author of the story. This is the reality of Leo Tolstoy’s brilliant assertion that ‘a real work of art destroys, in the consciousness of the receiver, the separation between himself and the artist.’

  A clever scientific study examining this process seems to have caught people in the act of ‘watching’ the models of stories that their brains were busily building. Participants wore glasses that tracked their saccades. When they heard stories in which lots of events happened above the line of the horizon, their eyes kept making micro-movements upwards, as if they were actively scanning the models their brains were generating of its scenes. When they heard ‘downward’ stories, that’s where their eyes went too.

  The revelation that we experience the stories we read by building hallucinated models of them in our heads makes sense of many of the rules of grammar we were taught at school. For the neuroscientist Professor Benjamin Bergen, grammar acts like a film director, telling the brain what to model and when. He writes that grammar ‘appears to modulate what part of an evoked simulation someone is invited to focus on, the grain of detail with which the simulation is performed, or what perspective to perform that simulation from’.

  According to Bergen, we start modelling words as soon as we start reading them. We don’t wait until we get to the end of the sentence. This means the order in which writers place their words matters. This is perhaps why transitive construction – Jane gave a Kitten to her Dad – is more effective than the ditransitive – Jane gave her Dad a kitten. Picturing Jane, then the Kitten, then her Dad mimics the real-world action that we, as readers, should be modelling. It means we’re mentally experiencing the scene in the correct sequence. Because writers are, in effect, generating neural movies in the minds of their readers, they should privilege word order that’s filmic, imagining how their reader’s neural camera will alight upon each component of a sentence.

  For the same reason, active sentence construction – Jane kissed her Dad – is more effective than passive – Dad was kissed by Jane. Witnessing this in real life, Jane’s initial movement would draw our attention and then we’d watch the kiss play out. We wouldn’t be dumbly staring at Dad, waiting for something to happen. Active grammar means readers model the scene on the page in the same way that they’d model it if it happened in front of them. It makes for easier and more immersive reading.

  A further powerful tool for the model-creating storyteller is the use of specific detail. If writers want their readers to properly model their story-worlds they should take the trouble to describe them as precisely as possible. Precise and specific description makes for precise and specific models. One study concluded that, to make vivid scenes, three specific qualities of an object should be described, with the researcher’s examples including ‘a dark blue carpet’ and ‘an orange striped pencil.’

  The findings Bergen describes also suggest the reason writers are continually encouraged to ‘show not tell’. As C. S. Lewis implored a young writer in 1956, ‘instead of telling us a thing was “terrible”, describe it so that we’ll be terrified. Don’t say it was “delightful”; make us say “delightful” when we’ve read the description.’ The abstract information contained in adjectives such as ‘terrible’ and ‘delightful’ is thin gruel for the model-building brain. In order to experience a character’s terror or delight or rage or panic or sorrow, it has to make a model of it. By building its model of the scene, in all its vivid and specific detail, it experiences what’s happening on the page almost as if it’s actually happening. Only that way will the scene truly rouse our emotions.

  Mary Shelley may have been a teenager writing more than 170 years before the discovery of our model-making processes, but when she introduces us to Frankenstein’s monster she displays an impressive instinct for its ramifications: filmic word order; specificity and show-not-tell.

  It was already one in the morning; the rain pattered dismally against the panes, and my candle was nearly burned out, when, by the glimmer of the half-extinguished light, I saw the dull yellow eye of the creature open; it breathed hard, and a convulsive motion agitated its limbs. How can I describe my emotions at this catastrophe, or how delineate the wretch whom with such infinite care and pains I had endeavoured to form? His limbs were in proportion, and I had selected his features as beautiful. Beautiful! Great god! His yellow skin scarcely covered the work of muscles and arteries beneath; his hair was of a lustrous black, and flowing; his teeth was of a pearly whiteness; but these luxuriances only formed a more horrid contrast with his watery eyes, that seemed almost of the same colour as the dun-white sockets in which they were set, his shrivelled complexion and straight black lips.

  Immersive model worlds can also be summoned by the evocation of the senses. Touches, tastes, scents and sounds can be recreated in the brains of readers as the neural networks associated with these sensations become activated when they see the rig
ht words. All it takes is deployment of specific detail, with the sensory information (‘a cabbagey’) paired to visual information (‘brown sock’). This simple technique is used to magical effect in Patrick Süskind’s novel Perfume. It tells of an orphan with an awesome sense of smell who’s born in a malodorous fish market. He takes us into his world of eighteenth-century Paris by conjuring a kingdom of scent:

  the streets stank of manure, the courtyards of urine, the stairwells stank of mouldering wood and rat droppings, the kitchens of spoiled cabbage and mutton fat; the unaired parlours stank of stale dust, the bedrooms of greasy sheets, damp featherbeds and the pungently sweet aroma of chamber-pots. The stench of sulphur rose from the chimneys, the stench of caustic lyes from the tanneries, and from the slaughterhouses came the stench of congealed blood. People stank of sweat and unwashed clothes; from their mouths came the stench of rotting teeth, from their bellies that of onions, and from their bodies, if they were no longer very young, came the stench of rancid cheese and sour milk and tumorous disease … [the heat of day squeezed] its putrefying vapour, a blend of rotting melon and the fetid odour of burned animal horn, out into the nearby alleys.

  1.4

  The brain’s propensity for automatic model-making is exploited with superb effect by tellers of fantasy and science-fiction stories. Simply naming a planet, ancient war or obscure technical detail seems to trigger the neural process of building it, as if it actually exists. One of the first books I fell in love with as a boy was J.R.R. Tolkien’s The Hobbit. My best friend Oliver and I obsessed over the maps it contained – ‘Mount Gundabad’; ‘Desolation of Smaug’; ‘West lies Mirkwood the Great – there are spiders.’ When his father made photocopies of them for us, these maps became the focus of a summer of blissful play. The places Tolkien sketched out, on those maps, felt as real to us as the sweet shop in Silverdale Road.

  In Star Wars, when Han Solo boasts that his ship the Millennium Falcon ‘made the Kessel Run in less than twelve parsecs’ we have the strange experience of knowing it’s an actor doing gibberish whilst simultaneously somehow feeling as if it’s real. The line works because of its absolute specificity and its adherence to what sounds like truth (the ‘Kessel Run’ really could be a race while ‘parsecs’ are a genuine measurement of distance, equivalent to 3.26 light years). As ridiculous as some of this language actually is, rather than taking us out of the storyteller’s fictional hallucination, it manages to give it even more density.

  By merest suggestion, the Kessel Run becomes real. We can imagine the dusty planet on which the race begins, hear the whine and blast of the engines, smell the alien piss around the back of the mechanics’ wind-flapping encampments. This is just what happens in Bladerunner’s most famous scene, in which the replicant Roy Batty, on the edge of death, tells Rick Deckard, ‘I’ve seen things you people wouldn’t believe. Attack ships on fire off the shoulder of Orion. I watched C-beams glitter in the dark near the Tannhäuser Gate.’

  Those C-beams! That gate! Their wonder lies in the fact that they’re merely suggested. Like monsters in the most frightening horror stories, they feel all the more real for being the creations, not of the writer, but of our own incessant model-making imaginations.

  1.5

  The hallucinated world our brain creates for us is specialised. It’s honed towards our particular survival needs. Like all animals, our species can only detect the narrow band of reality that’s necessary for us to get by. Dogs live principally in a world of smell, moles in touch and knife-fish in a realm of electricity. The human world is predominantly that of people. Our hyper-social brains are designed to control an environment of other selves.

  Humans have an extraordinary gift for reading and understanding the minds of other people. In order to control our environment of humans, we have to be able to predict what they’re going to do. The importance and complexity of human behaviour means we have an insatiable curiosity about it. Storytellers exploit both these mechanisms and this curiosity; the stories they tell are a deep investigation into the ever-fascinating whys of what people do.

  We’ve been a social species, whose survival has depended upon human cooperation, for hundreds of thousands of years. But over the last 1,000 generations it’s been argued that these social instincts have been rapidly honed and strengthened. This ‘sharp acceleration’ of selection for social traits, writes developmental psychologist Professor Bruce Hood, has left us with brains that are ‘exquisitely engineered to interact with other brains’.

  For earlier humans that roamed hostile environments, aggression and physicality had been critical. But the more cooperative we became, the less useful these traits proved. When we started living in settled communities, they grew especially troublesome. There, it would’ve been the people who were better at getting along with others, rather than the physically dominant, who’d have been more successful.

  This success in the community would’ve meant greater reproductive success, which would’ve gradually led to the emergence of a new strain of human. These humans had thinner and weaker bones than their ancestors and greatly reduced muscle mass, their physical strength as much as halving. They also had the kind of brain chemistry and hormones that predisposed them to behaviour specialised for settled communal living. They’d have been less interpersonally aggressive, but more adept at the kind of psychological manipulation necessary for negotiating, trading and diplomacy. They’d become expert at controlling their environment of other human minds.

  You might compare it to the difference between a wolf and a dog. A wolf survives by cooperating as well as fighting for dominance and killing prey. A dog does so by manipulating its human owner such that they’d do anything for them. The power my beloved labradoodle Parker has over my own brain is frankly embarrassing. (I’ve dedicated this bloody book to her.) In fact, this might be more than a mere analogy. Researchers such as Hood argue that modern humans, just like dogs, have gone through a process of domestication. Support for the idea comes partly from the fact that, over the last 20,000 years, our brains have shrunk by between ten and fifteen per cent, the same reduction that’s been observed in all the thirty or so other animals that humans have domesticated. Just as with those creatures, our domestication means we’re tamer than our ancestors, better at reading social signals and more dependent on others. But, writes Hood, ‘no other animal has taken domestication to the extent that we have.’ Our brains may have initially evolved to ‘cope with a potentially threatening world of predators, limited food and adverse weather, but we now rely on it to navigate an equally unpredictable social landscape.’

  Unpredictable humans. This is the stuff of story.

  For modern humans, controlling the world means controlling other people, and that means understanding them. We’re wired to be fascinated by others and get valuable information from their faces. This fascination begins almost immediately. Whereas ape and monkey parents spend almost no time looking at their babies’ faces, we’re helplessly drawn to them. Newborns are attracted to human faces more than to any other object and, one hour from birth, begin imitating them. By two, they’ve learned to control their social worlds by smiling. By the time they’re adults, they’ve become so adept at reading people that they’re making calculations about status and character automatically, in one tenth of a second. The evolution of our strange, extremely other-obsessed brains has brought with it weird side-effects. Human obsession with faces is so fierce we see them almost anywhere: in fire; in clouds; down spooky corridors; in toast.

  We sense minds everywhere too. Just as the brain models the outside world it also builds models of minds. This skill, which is an essential weapon in our social armoury, is known as ‘theory of mind’. It enables us to imagine what others are thinking, feeling and plotting, even when they’re not present. We can experience the world from another’s perspective. For the psychologist Professor Nicholas Epley this capacity, which is obviously essential for storytelling, gave us incredible power. ‘Our species has
conquered the Earth because of our ability to understand the minds of others,’ he writes, ‘not because of our opposable thumbs or handiness with tools.’ We develop this skill at around the age of four. It’s then that we become story-ready; equipped to understand the logic of narrative.

  The human ability to populate our minds with imagined other minds is the start of religion. Shamans in hunter-gatherer tribes would enter trance states and interact with spirits, and use these interactions as attempts to control the world. Religions were also typically animistic: our storytelling brains would project human-like minds into trees, rocks, mountains and animals, imagining they were possessed by gods who were responsible for changeful events, and required controlling with ritual and sacrifice.

  Childhood stories reflect our natural tendency for such hyperactive mind-detecting. In fairytales, human-like minds are everywhere: mirrors talk, pigs eat breakfast, frogs turn into princes. Youngsters naturally treat their dolls and teddies as if they’re inhabited by selves. I remember feeling terrible guilt for preferring my pink bear, handmade by my Grandmother, to my shop-bought brown bear. I knew they both knew how I felt, and that left me distracted and sad.

  We never really grow out of our inherent animism. Which one of us hasn’t kicked a door that’s slammed on our fingers believing, in that disorientating flash of pain, that it attacked us out of spite? Who among us hasn’t told a self-assembly wardrobe to fuck off? Whose storytelling brain doesn’t commit its own literary-style pathetic fallacy, allowing the sun to make them optimistic about the coming day or the brooding clouds pessimistic? Studies indicate that those who anthropomorphise a human personality onto their cars show less interest in trading them. Bankers project human moods onto the movements of the markets and place their trades accordingly.

 

‹ Prev