Book Read Free

Elon Musk

Page 25

by Ashlee Vance


  SpaceX’s main competitor for ISS resupply missions and commercial satellites in the United States is Orbital Sciences Corporation. Founded in Virginia in 1982, the company started out not unlike SpaceX, as the new kid that raised outside funding and focused on putting smaller satellites into low-Earth orbit. Orbital is more experienced, although it has a limited roster of machine types. Orbital depends on suppliers, including Russian and Ukrainian companies, for its engines and rocket bodies, making it more of an assembler of spacecraft than a true builder like SpaceX. And, also unlike SpaceX, Orbital’s capsules cannot withstand the journey back from the ISS to Earth, so it’s unable to return experiments and other goods. In October 2014, one of Orbital’s rockets blew up on the launchpad. With its ability to launch on hold while it investigated the incident, Orbital reached out to SpaceX for help. It wanted to see if Musk had any extra capacity to take care of some of Orbital’s customers. The company also signaled that it would move away from using Russian engines as well.

  As for getting humans to space, SpaceX and Boeing were the victors in a four-year NASA competition to fly astronauts to the ISS. SpaceX will get $2.6 billion, and Boeing will get $4.2 billion to develop their capsules and ferry people to the ISS by 2017. The companies would, in effect, be replacing the space shuttle and restoring the United States’ ability to conduct manned flights. “I actually don’t mind that Boeing gets twice as much money for meeting the same NASA requirements as SpaceX with worse technology,” Musk said. “Having two companies involved is better for the advancement of human spaceflight.”

  SpaceX had once looked like it too would be a one-trick pony. The company’s original plans were to have the smallish Falcon 1 function as its primary workhorse. At $6 million to $12 million per flight, the Falcon 1 was by far the cheapest means of getting something into orbit, thrilling people in the space industry. When Google announced its Lunar X Prize in 2007—$30 million in awards to people who could land a robot on the moon—many of the proposals that followed selected the Falcon 1 as their preferred launch vehicle because it seemed like the only reasonably priced option for getting something to the moon. Scientists around the world were equally excited, thinking that for the first time they had a means of placing experiments into orbit in a cost-effective way. But for all the enthusiastic talk about the Falcon 1, the demand never arrived. “It became very clear that there was a huge need for the Falcon 1 but no money for it,” said Shotwell. “The market has to be able to sustain a certain amount of vehicles, and three Falcon 1s per year does not make a business.” The last Falcon 1 launch took place in July 2009 from Kwajalein, when SpaceX carried a satellite into orbit for the Malaysian government. People in the aerospace industry have been grumbling ever since. “We gave Falcon 1 a hell of a shot,” Shotwell said. “I was emotional about it and disappointed. I’d anticipated a flood of orders but, after eight years, they just did not come.”

  SpaceX has since expanded its launch capabilities at a remarkable pace and looks like it might be on the verge of getting that $12 million per flight option back. In June 2010, the Falcon 9 flew for the first time and orbited Earth successfully. In December 2010, SpaceX proved that the Falcon 9 could carry the Dragon capsule into space and that the capsule could be recovered safely after an ocean landing.* It became the first commercial company ever to pull off this feat. Then, in May 2012, SpaceX went through the most significant moment in the company’s history since that first successful launch on Kwajalein.

  On May 22, at 3:44 A.M., a Falcon 9 rocket took off from the Kennedy Space Center in Cape Canaveral, Florida. The rocket did its yeoman-like work boosting Dragon into space. Then the capsule’s solar panels fanned out and Dragon became dependent on its eighteen Draco thrusters, or small rocket engines, to guide its path to the International Space Station. The SpaceX engineers worked in shifts—some of them sleeping on cots at the factory—as it took the capsule three days for Dragon to make its journey. They spent most of the time observing Dragon’s flight and checking to see that its sensor systems were picking up the ISS. Originally, Dragon planned to dock with the ISS around 4 A.M. on the twenty-fifth, but as the capsule approached the space station, an unexpected glint kept throwing off the calculations of a laser used to measure the distance between Dragon and the ISS. “I remember it being two and a half hours of struggle,” Shotwell said. Her outfit of Uggs, a fishnet sweater, and leggings started to feel like pajamas as the night wore on, and the engineers battled this unplanned difficulty. Fearing all the time that the mission would be aborted, SpaceX decided to upload some new software to the Dragon that would cut the size of the visual frame used by the sensors to eliminate the effect of the sunlight on the machine. Then, just before 7 A.M., Dragon got close enough to the ISS for Don Pettit, an astronaut, to use a fifty-eight-foot robotic arm to reach out and grab the resupply capsule. “Houston, Station, it looks like we’ve got us a dragon by the tail,” Pettit said.13

  “I’d been digesting my guts,” Shotwell said. “And then I am drinking champagne at six in the morning.” About thirty people were in the control room when the docking happened. Over the next couple of hours, workers streamed into the SpaceX factory to soak up the elation of the moment. SpaceX had set another first, as the only private company to dock with the ISS. A couple of months later SpaceX received $440 million from NASA to keep developing Dragon so that it could transport people. “Elon is changing the way aerospace business is done,” said NASA’s Stoker. “He’s managed to keep the safety factor up while cutting costs. He’s just taken the best things from the tech industry like the open-floor office plans and having everyone talking and all this human interaction. It’s a very different way to most of the aerospace industry, which is designed to produce requirements documents and project reviews.”

  In May 2014, Musk invited the press to SpaceX’s headquarters to demonstrate what some of that NASA money had bought. He unveiled the Dragon V2, or version two, spacecraft. Unlike most executives, who like to show their products off at trade shows or daytime events, Musk prefers to hold true Hollywood-style galas in the evenings. People arrived in Hawthorne by the hundreds and snacked on hors d’oeuvres until the 7:30 P.M. showing. Musk appeared wearing a purplish velvet jacket and popping open the capsule’s door with a bump of his fist like the Fonz. What he revealed was spectacular. The cramped quarters of past capsules were gone. There were seven thin, sturdy, contoured seats arranged with four seats close to the main console and a row of three seats in the back. Musk walked around in the capsule to show how roomy it was and then plopped down in the central captain’s chair. He reached up and unlocked a four-paneled flat-screen console that gracefully slid down right in front of the first row of seats.* In the middle of the console was a joystick for flying the aircraft and some physical buttons for essential functions that astronauts could press in case of an emergency or a malfunctioning touch-screen. The inside of the capsule had a bright, metallic finish. Someone had finally built a spaceship worthy of scientist and moviemaker dreams.

  There was substance to go with the style. The Dragon 2 will be able to dock with the ISS and other space habitats automatically without needing the intervention of a robotic arm. It will run on a SuperDraco engine—a thruster made by SpaceX and the first engine ever built completely by a 3-D printer to go into space. This means that a machine guided by a computer formed the engine out of single piece of metal—in this case the high-strength alloy Inconel—so that its strength and performance should exceed anything built by humans by welding various parts together. And most mind-boggling of all, Musk revealed that the Dragon 2 will be able to land anywhere on Earth that SpaceX wants by using the SuperDraco engines and thrusters to come to a gentle stop on the ground. No more landings at sea. No more throwing spaceships away. “That is how a twenty-first-century spaceship should land,” Musk said. “You can just reload propellant and fly again. So long as we continue to throw away rockets and spacecraft, we will never have true access to space.”

 
The Dragon 2 is just one of the machines that SpaceX continues to develop in parallel. One of the company’s next milestones will be the first flight of the Falcon Heavy, which is designed to be the world’s most powerful rocket.* SpaceX has found a way to combine three Falcon 9s into a single craft with 27 of the Merlin engines and the ability to carry more than 53 metric tons of stuff into orbit. Part of the genius of Musk and Mueller’s designs is that SpaceX can reuse the same engine in different configurations—from the Falcon 1 up to the Falcon Heavy—saving on cost and time. “We make our main combustion chambers, turbo pump, gas generators, injectors, and main valves,” Mueller said. “We have complete control. We have our own test site, while most of the other guys use government test sites. The labor hours are cut in half and so is the work around the materials. Four years ago, we could make two rockets a year and now we can make twenty a year.” SpaceX boasts that the Falcon Heavy can take up twice the payload of the nearest competitor—the Delta IV Heavy from Boeing/ULA—at one-third the cost. SpaceX is also busy building a spaceport from the ground up. The goal is to be able to launch many rockets an hour from this facility located in Brownsville, Texas, by automating the processes needed to stand a rocket up on the pad, fuel it, and send it off.

  Just as it did in the early days, SpaceX continues to experiment with these new vehicles during actual launches in ways that other companies would dare not do. SpaceX will often announce that it’s trying out a new engine or its landing legs and place the emphasis on that one upgrade in the marketing material leading up to a launch. It’s common, though, for SpaceX to test out a dozen other objectives in secret during a mission. Musk essentially asks employees to do the impossible on top of the impossible. One former SpaceX executive described the working atmosphere as a perpetual-motion machine that runs on a weird mix of dissatisfaction and eternal hope. “It’s like he has everyone working on this car that is meant to get from Los Angeles to New York on one tank of gas,” this executive said. “They will work on the car for a year and test all of its parts. Then, when they set off for New York after that year, all of the vice presidents think privately that the car will be lucky to get to Las Vegas. What ends up happening is that the car gets to New Mexico—twice as far as they ever expected—and Elon is still mad. He gets twice as much as anyone else out of people.”

  There’s a degree to which it’s just never enough for Musk, no matter what it is. Case in point: the December 2010 launch in which SpaceX got the Dragon capsule to orbit Earth and return successfully. This had been one of the company’s great achievements, and people had worked tirelessly for months, if not years. The launch had taken place on December 8, and SpaceX had a Christmas party on December 16. About ninety minutes before the party started, Musk had called his top executives to SpaceX for a meeting. Six of them, including Mueller, were decked out in party attire and ready to celebrate the holidays and SpaceX’s historic achievement around Dragon. Musk laid into them for about an hour because the truss structure for a future rocket was running behind schedule. “Their wives were sitting three cubes over waiting for the berating to end,” Brogan said. Other examples of similar behavior have cropped up from time to time. Musk, for example, rewarded a group of thirty employees who had pulled off a tough project for NASA with bonuses that consisted of additional stock option grants. Many of the employees, seeking instant, more tangible gratification, demanded cash. “He chided us for not valuing the stock,” Drew Eldeen, a former engineer, said. “He said, ‘In the long run, this is worth a lot more than a thousand dollars in cash.’ He wasn’t screaming or anything like that, but he seemed disappointed in us. It was hard to hear that.”

  The lingering question for many SpaceX employees is when exactly they will see a big reward for all their work. SpaceX’s staff is paid well but by no means exorbitantly. Many of them expect to make their money when SpaceX files for an initial public offering. The thing is that Musk does not want to go public anytime soon, and understandably so. It’s a bit hard to explain the whole Mars thing to investors, when it’s unclear what the business model around starting a colony on another planet will be. When the employees heard Musk say that an IPO was years away and would not occur until the Mars mission looked more secure, they started to grumble, and when Musk found out, he addressed all of SpaceX in an e-mail that is a fantastic window into his thinking and how it differs from almost every other CEO’s. (The full e-mail appears in Appendix 3.)

  June 7, 2013

  Going Public

  Per my recent comments, I am increasingly concerned about SpaceX going public before the Mars transport system is in place. Creating the technology needed to establish life on Mars is and always has been the fundamental goal of SpaceX. If being a public company diminishes that likelihood, then we should not do so until Mars is secure. This is something that I am open to reconsidering, but, given my experiences with Tesla and SolarCity, I am hesitant to foist being public on SpaceX, especially given the long term nature of our mission.

  Some at SpaceX who have not been through a public company experience may think that being public is desirable. This is not so. Public company stocks, particularly if big step changes in technology are involved, go through extreme volatility, both for reasons of internal execution and for reasons that have nothing to do with anything except the economy. This causes people to be distracted by the manic-depressive nature of the stock instead of creating great products.

  For those who are under the impression that they are so clever that they can outsmart public market investors and would sell SpaceX stock at the “right time,” let me relieve you of any such notion. If you really are better than most hedge fund managers, then there is no need to worry about the value of your SpaceX stock, as you can just invest in other public company stocks and make billions of dollars in the market.

  Elon

  10

  THE REVENGE OF THE ELECTRIC CAR

  THERE ARE SO MANY TELEVISION COMMERCIALS FOR CARS AND TRUCKS that it’s easy to become immune to them and ignore what’s taking place in the ads. That’s okay. Because there’s not really much of note happening. Carmakers looking to put a modicum of effort into their ads have been hawking the exact same things for decades: a car with a bit more room, a few extra miles per gallon, better handling, or an extra cup holder. Those that can’t find anything interesting at all to tout about their cars turn to scantily clad women, men with British accents, and, when necessary, dancing mice in tuxedos to try and convince people that their products are better than the rest. Next time a car ad appears on your television, pause for a moment and really listen to what’s being said. When you realize that the Volkswagen sign-and-drive “event” is code for “we’re making the experience of buying a car slightly less miserable than usual,” you’ll start to appreciate just how low the automotive industry has sunk.

  In the middle of 2012, Tesla Motors stunned its complacent peers in the automotive industry. It began shipping the Model S sedan. This all-electric luxury vehicle could go more than 300 miles on a single charge. It could reach 60 miles per hour in 4.2 seconds. It could seat seven people, if you used a couple of optional rear-facing seats in the back for kids. It also had two trunks. There was the standard one and then what Tesla calls a “frunk” up front, where the bulky engine would usually be. The Model S ran on an electric battery pack that makes up the base of the car and a watermelon-sized electric motor located between the rear tires. Getting rid of the engine and its din of clanging machinery also meant that the Model S ran silently. The Model S outclassed most other luxury sedans in terms of raw speed, mileage, handling, and storage space.

  And there was more—like a cutesy thing with the door handles, which were flush with the car’s body until the driver got close to the Model S. Then the silver handles would pop out, the driver would open the door and get in, and the handles would retract flush with the car’s body again. Once inside, the driver encountered a seventeen-inch touch-screen that controlled the vast majority of the car’s f
unctions, be it raising the volume on the stereo* or opening the sunroof with a slide of the finger. Whereas most cars have a large dashboard to accommodate various displays and buttons and to protect people from the noise of the engine, the Model S offered up vast amounts of space. The Model S had an ever-present Internet connection, allowing the driver to stream music through the touch console and to display massive Google maps for navigation. The driver didn’t need to turn a key or even push an ignition button to start the car. His weight in the seat coupled with a sensor in the key fob, which is shaped like a tiny Model S, was enough to activate the vehicle. Made of lightweight aluminum, the car achieved the highest safety rating in history. And it could be recharged for free at Tesla’s stations lining highways across the United States and later around the world.

  For both engineers and green-minded people, the Model S presented a model of efficiency. Traditional cars and hybrids have anywhere from hundreds to thousands of moving parts. The engine must perform constant, controlled explosions with pistons, crankshafts, oil filters, alternators, fans, distributors, valves, coils, and cylinders among the many pieces of machinery needed for the work. The oomph produced by the engine must then be passed through clutches, gears, and driveshafts to make the wheels turn, and then exhaust systems have to deal with the waste. Cars end up being about 10–20 percent efficient at turning the input of gasoline into the output of propulsion. Most of the energy (about 70 percent) is lost as heat in the engine, while the rest is lost through wind resistance, braking, and other mechanical functions. The Model S, by contrast, has about a dozen moving parts, with the battery pack sending energy instantly to a watermelon-sized motor that turns the wheels. The Model S ends up being about 60 percent efficient, losing most of the rest of its energy to heat. The sedan gets the equivalent of about 100 miles per gallon.*

 

‹ Prev