Book Read Free

A Stubbornly Persistent Illusion

Page 38

by Stephen Hawking


  The general theory of relativity is as yet incomplete insofar as it has been able to apply the general principle of relativity satisfactorily only to gravitational fields, but not to the total field. We do not yet know with certainty, by what mathematical mechanism the total field in space is to be described and what the general invariant laws are to which this total field is subject. One thing, however, seems certain: namely, that the general principle of relativity will prove a necessary and effective tool for the solution of the problem of the total field.

  Selections from OUT OF MY LATER YEARS: Reprinted with permission from The Philosophical Library, New York.

  E = Mc2

  From Albert Einstein: Out of my Later Years, Philosophical Library, New York 1950.

  First published in Science Illustrated, first issue, April 1946.

  In order to understand the law of the equivalence of mass and energy, we must go back to two conservation or “balance” principles which, independent of each other, held a high place in pre-relativity physics. These were the principle of the conservation of energy and the principle of the conservation of mass. The first of these, advanced by Leibnitz as long ago as the seventeenth century, was developed in the nineteenth century essentially as a corollary of a principle of mechanics.

  Drawing from Dr. Einstein’s manuscript.

  Consider, for example, a pendulum whose mass swings back and forth between the points A and B. At these points the mass m is higher by the amount h than it is at C, the lowest point of the path (see drawing). At C, on the other hand, the lifting height has disappeared and instead of it the mass has a velocity v. It is as though the lifting height could be converted entirely into velocity, and vice versa. The exact relation would be expressed as with g representing the acceleration of gravity. What is interesting here is that this relation is independent of both the length of the pendulum and the form of the path through which the mass moves.

  The significance is that something remains constant throughout the process, and that something is energy. At A and at B it is an energy of position, or “potential” energy; at C it is an energy of motion, or “kinetic” energy. If this concept is correct, then the sum must have the same value for any position of the pendulum, if h is understood to represent the height above C, and v the velocity at that point in the pendulum’s path. And such is found to be actually the case. The generalization of this principle gives us the law of the conservation of mechanical energy. But what happens when friction stops the pendulum?

  The answer to that was found in the study of heat phenomena. This study, based on the assumption that heat is an indestructible substance which flows from a warmer to a colder object, seemed to give us a principle of the “conservation of heat.” On the other hand, from time immemorial it has been known that heat could be produced by friction, as in the fire-making drills of the Indians. The physicists were for long unable to account for this kind of heat “production.” Their difficulties were overcome only when it was successfully established that, for any given amount of heat produced by friction, an exactly proportional amount of energy had to be expended. Thus did we arrive at a principle of the “equivalence of work and heat.” With our pendulum, for example, mechanical energy is gradually converted by friction into heat.

  In such fashion the principles of the conservation of mechanical and thermal energies were merged into one. The physicists were thereupon persuaded that the conservation principle could be further extended to take in chemical and electromagnetic processes—in short, could be applied to all fields. It appeared that in our physical system there was a sum total of energies that remained constant through all changes that might occur.

  Now for the principle of the conservation. Mass is defined by the resistance that a body opposes to its acceleration (inert mass). It is also measured by the weight of the body (heavy mass). That these two radically different definitions lead to the same value for the mass of a body is, in itself, an astonishing fact. According to the principle—namely, that masses remain unchanged under any physical or chemical changes—the mass appeared to be the essential (because unvarying) quality of matter. Heating, melting, vaporization, or combining into chemical compounds would not change the total mass.

  Physicists accepted this principle up to a few decades ago. But it proved inadequate in the face of the special theory of relativity. It was therefore merged with the energy principle just as, about 60 years before, the principle of the conservation of mechanical energy had been combined with the principle of the conservation of heat. We might say that the principle of the conservation of energy, having previously swallowed up that of the conservation of heat, now proceeded to swallow that of the conservation of mass—and holds the field alone.

  It is customary to express the equivalence of mass and energy (though somewhat inexactly) by the formula E = mc2, in which c represents the velocity of light, about 186,000 miles per second. E is the energy that is contained in a stationary body; m is its mass. The energy that belongs to the mass m is equal to this mass, multiplied by the square of the enormous speed of light—which is to say, a vast amount of energy for every unit of mass.

  But if every gram of material contains this tremendous energy, why did it go so long unnoticed? The answer is simple enough: so long as none of the energy is given off externally, it cannot be observed. It is as though a man who is fabulously rich should never spend or give away a cent; no one could tell how rich he was.

  Now we can reverse the relation that an increase of E in the amount of energy must be accompanied by an increase of in the mass. I can easily supply energy to the mass—for instance, if I heat it by 10 degrees. So why not measure the mass increase, or weight increase, connected with this change? The trouble here is that in the mass increase the enormous factor c2 occurs in the denominator of the fraction. In such a case the increase is too small to be measured directly; even with the most sensitive balance.

  For a mass increase to be measurable, the change of energy per mass unit must be enormously large. We know of only one sphere in which such amounts of energy per mass unit are released: namely, radioactive disintegration. Schematically, the process goes like this: An atom of the mass M splits into two atoms of the mass M′ and M″, which separate with tremendous kinetic energy. If we imagine these two masses as brought to rest—that is, if we take this energy of motion from them—then, considered together, they are essentially poorer in energy than was the original atom. According to the equivalence principle, the mass sum M′ + M″ of the disintegration products must also be somewhat smaller than the original mass M of the disintegrating atom—in contradiction to the old principle of the conservation of mass. The relative difference of the two is on the order of of one percent.

  Now, we cannot actually weigh the atoms individually. However, there are indirect methods for measuring their weights exactly. We can likewise determine the kinetic energies that are transferred to the disintegration products M′ and M″. Thus it has become possible to test and confirm the equivalence formula. Also, the law permits us to calculate in advance, from precisely determined atom weights, just how much energy will be released with any atom disintegration we have in mind. The law says nothing, of course, as to whether—or how—the disintegration reaction can be brought about.

  What takes place can be illustrated with the help of our rich man. The atom M is a rich miser who, during his life, gives away no money (energy). But in his will he bequeaths his fortune to his sons M′ and M″, on condition that they give to the community a small amount, less than one thousandth of the whole estate (energy or mass). The sons together have somewhat less than the father had (the mass sum M′ + M″ is somewhat smaller than the mass M of the radioactive atom). But the part given to the community, though relatively small, is still so enormously large (considered as kinetic energy) that it brings with it a great threat of evil. Averting that threat has become the most urgent problem of our time.

  WHAT IS THE THEORY OF RELATIVITY?<
br />
  From Albert Einstein: Out of my Later Years, Philosophical Library, New York 1950.

  Written at the request of Times, London. First published under the tittle “My Theory” in Times, Nov 28, 1919.

  I gladly accede to the request of your colleague to write something for The Times on relativity. After the lamentable breakdown of the old active intercourse between men of learning, I welcome this opportunity of expressing my feelings of joy and gratitude towards the astronomers and physicists of England. It is thoroughly in keeping with the great and proud traditions of scientific work in your country that eminent scientists should have spent much time and trouble, and your scientific institutions have spared no expense, to test the implications of a theory which was perfected and published during the War in the land of your enemies. Even though the investigation of the influence of the gravitational field of the sun on light rays is a purely objective matter, I cannot forbear to express my personal thanks to my English colleagues for their work; for without it I could hardly have lived to see the most important implication of my theory tested.

  We can distinguish various kinds of theories in physics. Most of them are constructive. They attempt to build up a picture of the more complex phenomena out of the materials of a relatively simple formal scheme from which they start out. Thus the kinetic theory of gases seeks to reduce mechanical, thermal and diffusional processes to movements of molecules—i.e., to build them up out of the hypothesis of molecular motion. When we say that we have succeeded in understanding a group of natural processes, we invariably mean that a constructive theory has been found which covers the processes in question.

  Along with this most important class of theories there exists a second, which I will call “principle-theories.” These employ the analytic, not the synthetic, method. The elements which form their basis and starting-point are not hypothetically constructed but empirically discovered ones, general characteristics of natural processes, principles that give rise to mathematically formulated criteria which the separate processes or the theoretical representations of them have to satisfy. Thus the science of thermodynamics seeks by analytical means to deduce necessary connections, which separate events have to satisfy, from the universally experienced fact that perpetual motion is impossible.

  The advantages of the constructive theory are completeness, adaptability and clearness, those of the principle theory are logical perfection and security of the foundations.

  The theory of relativity belongs to the latter class. In order to grasp its nature, one needs first of all to become acquainted with the principles on which it is based. Before I go into these, however, I must observe that the theory of relativity resembles a building consisting of two separate stories, the special theory and the general theory. The special theory, on which the general theory rests, applies to all physical phenomena with the exception of gravitation; the general theory provides the law of gravitation and its relations to the other forces of nature.

  It has, of course, been known since the days of the ancient Greeks that in order to describe the movement of a body, a second body is needed to which the movement of the first is referred. The movement of a vehicle is considered in reference to the earth’s surface, that of a planet to the totality of the visible fixed stars. In physics the body to which events are spatially referred is called the co-ordinate system. The laws of the mechanics of Galileo and Newton, for instance, can only be formulated with the aid of a coordinate system.

  The state of motion of the co-ordinate system may not, however, be arbitrarily chosen, if the laws of mechanics are to be valid (it must be free from rotation and acceleration). A co-ordinate system which is admitted in mechanics is called an “inertial system.” The state of motion of an inertial system is according to mechanics not one that is determined uniquely by nature. On the contrary, the following definition holds good:—a co-ordinate system that is moved uniformly and in a straight line relatively to an inertial system is likewise an inertial system. By the “special principle of relativity” is meant the generalization of this definition to include any natural event whatever: thus, every universal law of nature which is valid in relation to a co-ordinate system C, must also be valid, as it stands, in relation to a co-ordinate system C′, which is in uniform translatory motion relatively to C.

  The second principle, on which the special theory of relativity rests, is the “principle of the constant velocity of light in vacuo.” This principle asserts that light in vacuo always has a definite velocity of propagation (independent of the state of motion of the observer or of the source of the light). The confidence which physicists place in this principle springs from the successes achieved by the electro-dynamics of Clerk Maxwell and Lorentz.

  Both the above-mentioned principles are powerfully supported by experience, but appear not to be logically reconcilable. The special theory of relativity finally succeeded in reconciling them logically by a modification of kinematics—i.e., of the doctrine of the laws relating to space and time (from the point of view of physics). It became clear that to speak of the simultaneity of two events had no meaning except in relation to a given co-ordinate system, and that the shape of measuring devices and the speed at which clocks move depend on their state of motion with respect to the co-ordinate system.

  But the old physics, including the laws of motion of Galileo and Newton, did not fit in with the suggested relativist kinematics. From the latter, general mathematical conditions issued, to which natural laws had to conform, if the above-mentioned two principles were really to apply. To these, physics had to be adapted. In particular, scientists arrived at a new law of motion for (rapidly moving) mass points, which was admirably confirmed in the case of electrically charged particles. The most important upshot of the special theory of relativity concerned the inert mass of corporeal systems. It turned out that the inertia of a system necessarily depends on its energy-content, and this led straight to the notion that inert mass is simply latent energy. The principle of the conservation of mass lost its independence and became fused with that of the conservation of energy.

  The special theory of relativity, which was simply a systematic development of the electro-dynamics of Clerk Maxwell and Lorentz, pointed beyond itself, however. Should the independence of physical laws of the state of motion of the co-ordinate system be restricted to the uniform translatory motion of co-ordinate systems in respect to each other? What has nature to do with our coordinate systems and their state of motion? If it is necessary for the purpose of describing nature, to make use of a co-ordinate system arbitrarily introduced by us, then the choice of its state of motion ought to be subject to no restriction; the laws ought to be entirely independent of this choice (general principle of relativity).

  The establishment of this general principle of relativity is made easier by a fact of experience that has long been known, namely that the weight and the inertia of a body are controlled by the same constant. (Equality of inertial and gravitational mass.) Imagine a co-ordinate system which is rotating uniformly with respect to an inertial system in the Newtonian manner. The centrifugal forces which manifest themselves in relation to this system must, according to Newton’s teaching, be regarded as effects of inertia. But these centrifugal forces are, exactly like the forces of gravity, proportional to the masses of the bodies. Ought it not to be possible in this case to regard the co-ordinate system as stationary and the centrifugal forces as gravitational forces? This seems the obvious view, but classical mechanics forbid it.

  This hasty consideration suggests that a general theory of relativity must supply the laws of gravitation, and the consistent following up of the idea has justified our hopes.

  But the path was thornier than one might suppose, because it demanded the abandonment of Euclidean geometry. This is to say, the laws according to which fixed bodies may be arranged in space, do not completely accord with the spatial laws attributed to bodies by Euclidean geometry. This is what we mean when we talk of the “c
urvature of space.” The fundamental concepts of the “straight line,” the “plan,” etc., thereby lose their precise significance in physics.

  In the general theory of relativity the doctrine of space and time, or kinematics, no longer figures as a fundamental independent of the rest of physics. The geometrical behavior of bodies and the motion of clocks rather depend on gravitational fields, which in their turn are produced by matter.

  The new theory of gravitation diverges considerably, as regards principles, from Newton’s theory. But its practical results agree so nearly with those of Newton’s theory that it is difficult to find criteria for distinguishing them which are accessible to experience. Such have been discovered so far:—

  1. In the revolution of the ellipses of the planetary orbits round the sun (confirmed in the case of Mercury).

  2. In the curving of light rays by the action of gravitational fields (confirmed by the English photographs of eclipses).

  3. In a displacement of the spectral lines towards the red end of the spectrum in the case of light transmitted to us from stars of considerable magnitude (unconfirmed so far).*

  The chief attraction of the theory lies in its logical completeness. If a single one of the conclusions drawn from it proves wrong, it must be given up; to modify it without destroying the whole structure seems to be impossible.

  Let no one suppose, however, that the mighty work of Newton can really be superseded by this or any other theory. His great and lucid ideas will retain their unique significance for all time as the foundation of our whole modern conceptual structure in the sphere of natural philosophy.

  NOTE: Some of the statements in your paper concerning my life and person owe their origin to the lively imagination of the writer. Here is yet another application of the principle of relativity for the delectation of the reader:—Today I am described in Germany as a “German savant,” and in England as a “Swiss Jew.” Should it ever be my fate to be represented as a bête noire, I should, on the contrary, become a “Swiss Jew” for the Germans and a “German savant” for the English.

 

‹ Prev