Book Read Free

How We Got to Now: Six Innovations That Made the Modern World

Page 1

by Steven Johnson




  ALSO BY STEVEN JOHNSON

  Interface Culture:

  How New Technology Transforms the Way We Create and Communicate

  Emergence:

  The Connected Lives of Ants, Brains, Cities, and Software

  Mind Wide Open:

  Your Brain and the Neuroscience of Everyday Life

  Everything Bad Is Good for You:

  How Today’s Popular Culture Is Actually Making Us Smarter

  The Ghost Map:

  The Story of London’s Most Terrifying Epidemic—and How It Changed Science, Cities, and the Modern World

  The Invention of Air:

  A Story of Science, Faith, Revolution, and the Birth of America

  Where Good Ideas Come From:

  The Natural History of Innovation

  Future Perfect:

  The Case for Progress in a Networked Age

  RIVERHEAD BOOKS

  Published by the Penguin Group

  Penguin Group (USA) LLC

  375 Hudson Street

  New York, New York 10014

  USA • Canada • UK • Ireland • Australia • New Zealand • India • South Africa • China

  penguin.com

  A Penguin Random House Company

  Copyright © 2014 by Steven Johnson and Nutopia Ltd.

  Penguin supports copyright. Copyright fuels creativity, encourages diverse voices, promotes free speech, and creates a vibrant culture. Thank you for buying an authorized edition of this book and for complying with copyright laws by not reproducing, scanning, or distributing any part of it in any form without permission. You are supporting writers and allowing Penguin to continue to publish books for every reader.

  Library of Congress Cataloging-in-Publication Data

  Johnson, Steven, date.

  How we got to now : six innovations that made the modern world / Steven Johnson.

  p. cm.

  Includes bibliographical references and index.

  ISBN 978-0-698-15450-6

  1. Technology—Social aspects. 2. Inventions—Social aspects. I. Title.

  T14.5.J64 2014 2014018412

  338’.064—dc23

  Version_1

  For Jane, who no doubt expected a three-volume treatise on nineteenth-century whaling

  Contents

  Also by Steven Johnson

  Title Page

  Copyright

  Dedication

  Introduction: Robot Historians and the Hummingbird’s Wing

  1. GLASS

  2. COLD

  3. SOUND

  4. CLEAN

  5. TIME

  6. LIGHT

  Conclusion: The Time Travelers

  Acknowledgments

  Notes

  Bibliography

  Credits

  Index

  Introduction

  Robot Historians and the Hummingbird’s Wing

  A little more than two decades ago, the Mexican-American artist and philosopher Manuel De Landa published a strange and wonderful book called War in the Age of Intelligent Machines. The book was, technically speaking, a history of military technology, but it had nothing in common with what you might naturally expect from the genre. Instead of heroic accounts of submarine engineering written by some Naval Academy professor, De Landa’s book wove chaos theory, evolutionary biology, and French post-structuralist philosophy into histories of the conoidal bullet, radar, and other military innovations. I remember reading it as a grad student in my early twenties and thinking that it was one of those books that seemed completely sui generis, as though De Landa had arrived on Earth from some other intellectual planet. It seemed mesmerizing and deeply confusing at the same time.

  De Landa began the book with a brilliant interpretative twist. Imagine, he suggested, a work of history written sometime in the future by some form of artificial intelligence, mapping out the history of the preceding millennium. “We could imagine,” De Landa argued, “that such a robot historian would write a different kind of history than would its human counterpart.” Events that loom large in human accounts—the European conquest of the Americas, the fall of the Roman Empire, the Magna Carta—would be footnotes from the robot’s perspective. Other events that seem marginal to traditional history—the toy automatons that pretended to play chess in the eighteenth century, the Jacquard loom that inspired the punch cards of early computing—would be watershed moments to the robot historian, turning points that trace a direct line to the present. “While a human historian might try to understand the way people assembled clockworks, motors and other physical contraptions,” De Landa explained, “a robot historian would likely place a stronger emphasis on the way these machines affected human evolution. The robot would stress the fact that when clockworks once represented the dominant technology on the planet, people imagined the world around them as a similar system of cogs and wheels.”

  There are no intelligent robots in this book, alas. The innovations here belong to everyday life, not science fiction: lightbulbs, sound recordings, air-conditioning, a glass of clean tap water, a wristwatch, a glass lens. But I have tried to tell the story of these innovations from something like the perspective of De Landa’s robot historian. If the lightbulb could write a history of the past three hundred years, it too would look very different. We would see how much of our past was bound up in the pursuit of artificial light, how much ingenuity and struggle went into the battle against darkness, and how the inventions we came up with triggered changes that, at first glance, would seem to have nothing to do with lightbulbs.

  This is a history worth telling, in part, because it allows us to see a world we generally take for granted with fresh eyes. Most of us in the developed world don’t pause to think how amazing it is that we drink water from a tap and never once worry about dying forty-eight hours later from cholera. Thanks to air-conditioning, many of us live comfortably in climates that would have been intolerable just fifty years ago. Our lives are surrounded and supported by a whole class of objects that are enchanted with the ideas and creativity of thousands of people who came before us: inventors and hobbyists and reformers who steadily hacked away at the problem of making artificial light or clean drinking water so that we can enjoy those luxuries today without a second thought, without even thinking of them as luxuries in the first place. As the robot historians would no doubt remind us, we are indebted to those people every bit as much as, if not more than, we are to the kings and conquerors and magnates of traditional history.

  But the other reason to write this kind of history is that these innovations have set in motion a much wider array of changes in society than you might reasonably expect. Innovations usually begin life with an attempt to solve a specific problem, but once they get into circulation, they end up triggering other changes that would have been extremely difficult to predict. This is a pattern of change that appears constantly in evolutionary history. Think of the act of pollination: sometime during the Cretaceous age, flowers began to evolve colors and scents that signaled the presence of pollen to insects, who simultaneously evolved complex equipment to extract the pollen and, inadvertently, fertilize other flowers with pollen. Over time, the flowers supplemented the pollen with even more energy-rich nectar to lure the insects into the rituals of pollination. Bees and other insects evolved the sensory tools to see and be drawn to flowers, just as the flowers evolved the properties that attract bees. This is a different kind of survival of the fittest, not the usual zero-sum competitive story that we often hear in watered-down versions of Darwinism, but something more symbiotic: the insects and flowers succeed
because they, physically, fit well with each other. (The technical term for this is coevolution.) The importance of this relationship was not lost on Charles Darwin, who followed up the publication of On the Origin of Species with an entire book on orchid pollination.

  These coevolutionary interactions often lead to transformations in organisms that would seem to have no immediate connection to the original species. The symbiosis between flowering plants and insects that led to the production of nectar ultimately created an opportunity for much larger organisms—the hummingbirds—to extract nectar from plants, though to do that they evolved an extremely unusual form of flight mechanics that enables them to hover alongside the flower in a way that few birds can even come close to doing. Insects can stabilize themselves midflight because they have fundamental flexibility to their anatomy that vertebrates lack. Yet despite the restrictions placed on them by their skeletal structure, hummingbirds evolved a novel way of rotating their wings, giving power to the upstroke as well as the downstroke, enabling them to float midair while extracting nectar from a flower. These are the strange leaps that evolution makes constantly: the sexual reproduction strategies of plants end up shaping the design of a hummingbird’s wings. Had there been naturalists around to observe the insects first evolving pollination behavior alongside the flowering plants, they would have logically assumed that this strange new ritual had nothing to do with avian life. And yet it ended up precipitating one of the most astonishing physical transformations in the evolutionary history of birds.

  The history of ideas and innovation unfolds the same way. Johannes Gutenberg’s printing press created a surge in demand for spectacles, as the new practice of reading made Europeans across the continent suddenly realize that they were farsighted; the market demand for spectacles encouraged a growing number of people to produce and experiment with lenses, which led to the invention of the microscope, which shortly thereafter enabled us to perceive that our bodies were made up of microscopic cells. You wouldn’t think that printing technology would have anything to do with the expansion of our vision down to the cellular scale, just as you wouldn’t have thought that the evolution of pollen would alter the design of a hummingbird’s wing. But that is the way change happens.

  This may sound, at first blush, like a variation on the famous “butterfly effect” from chaos theory, where the flap of a butterfly’s wing in California ends up triggering a hurricane in the mid-Atlantic. But in fact, the two are fundamentally different. The extraordinary (and unsettling) property of the butterfly effect is that it involves a virtually unknowable chain of causality; you can’t map the link between the air molecules bouncing around the butterfly and the storm system brewing in the Atlantic. They may be connected, because everything is connected on some level, but it is beyond our capacity to parse those connections or, even harder, to predict them in advance. But something very different is at work with the flower and the hummingbird: while they are very different organisms, with very different needs and aptitudes, not to mention basic biological systems, the flower clearly influences the hummingbird’s physiognomy in direct, intelligible ways.

  This book is then partially about these strange chains of influence, the “hummingbird effect.” An innovation, or cluster of innovations, in one field ends up triggering changes that seem to belong to a different domain altogether. Hummingbird effects come in a variety of forms. Some are intuitive enough: orders-of-magnitude increases in the sharing of energy or information tend to set in motion a chaotic wave of change that easily surges over intellectual and social boundaries. (Just look at the story of the Internet over the past thirty years.) But other hummingbird effects are more subtle; they leave behind less conspicuous causal fingerprints. Breakthroughs in our ability to measure a phenomenon—time, temperature, mass—often open up new opportunities that seem at first blush to be unrelated. (The pendulum clock helped enable the factory towns of the industrial revolution.) Sometimes, as in the story of Gutenberg and the lens, a new innovation creates a liability or weakness in our natural toolkit, that sets us out in a new direction, generating new tools to fix a “problem” that was itself a kind of invention. Sometimes new tools reduce natural barriers and limits to human growth, the way the invention of air-conditioning enabled humans to colonize the hotspots of the planet at a scale that would have startled our ancestors just three generations ago. Sometimes the new tools influence us metaphorically, as in the robot historian’s connection between the clock and the mechanistic view of early physics, the universe imagined as a system of “cogs and wheels.”

  Observing hummingbird effects in history makes it clear that social transformations are not always the direct result of human agency and decision-making. Sometimes change comes about through the actions of political leaders or inventors or protest movements, who deliberately bring about some kind of new reality through their conscious planning. (We have an integrated national highway system in the United States in large part because our political leaders decided to pass the Federal-Aid Highway Act of 1956.) But in other cases, the ideas and innovations seem to have a life of their own, engendering changes in society that were not part of their creators’ vision. The inventors of air-conditioning were not trying to redraw the political map of America when they set about to cool down living rooms and office buildings, but, as we will see, the technology they unleashed on the world enabled dramatic changes in American settlement patterns, which in turn transformed the occupants of Congress and the White House.

  I have resisted the understandable temptation to assess these changes with some kind of value judgment. Certainly this book is a celebration of our ingenuity, but just because an innovation happens, that doesn’t mean there aren’t, in the end, mixed consequences as it ripples through society. Most ideas that get “selected” by culture are demonstrably improvements in terms of local objectives: the cases where we have chosen an inferior technology or scientific principle over a more productive or accurate one are the exceptions that prove the rule. And even when we do briefly choose the inferior VHS over Betamax, before long we have DVDs that outperform either option. So when you look at the arc of history from that perspective, it does trend toward better tools, better energy sources, better ways to transmit information.

  The problem lies with the externalities and unintended consequences. When Google launched its original search tool in 1999, it was a momentous improvement over any previous technique for exploring the Web’s vast archive. That was cause for celebration on almost every level: Google made the entire Web more useful, for free. But then Google started selling advertisements tied into the search requests it received, and within a few years, the efficiency of the searches (along with a few other online services like Craigslist) had hollowed out the advertising base of local newspapers around the United States. Almost no one saw that coming, not even the Google founders. You can make the argument—as it happens, I would probably make the argument—that the trade-off was worth it, and that the challenge from Google will ultimately unleash better forms of journalism, built around the unique opportunities of the Web instead of the printing press. But certainly there is a case to be made that the rise of Web advertising has been, all told, a negative development for the essential public resource of newspaper journalism. The same debate rages over just about every technological advance: Cars moved us more efficiently through space than did horses, but were they worth the cost to the environment or the walkable city? Air-conditioning allowed us to live in deserts, but at what cost to our water supplies?

  This book is resolutely agnostic on these questions of value. Figuring out whether we think the change is better for us in the long run is not the same as figuring out how the change came about in the first place. Both kinds of figuring are essential if we are to make sense of history and to map our path into the future. We need to be able to understand how innovation happens in society; we need to be able to predict and understand, as best as we can, the hummingbird effects that will transform other fi
elds after each innovation takes root. And at the same time we need a value system to decide which strains to encourage and which benefits aren’t worth the tangential costs. I have tried to spell out the full range of consequences with the innovations surveyed in this book, the good and the bad. The vacuum tube helped bring jazz to a mass audience, and it also helped amplify the Nuremberg rallies. How you ultimately feel about these transformations—Are we ultimately better off thanks to the invention of the vacuum tube?—will depend on your own belief systems about politics and social change.

  I should mention one additional element of the book’s focus: The “we” in this book, and in its title, is largely the “we” of North Americans and Europeans. The story of how China or Brazil got to now would be a different one, and every bit as interesting. But the European/North American story, while finite in its scope, is nonetheless of wider relevance because certain critical experiences—the rise of the scientific method, industrialization—happened in Europe first, and have now spread across the world. (Why they happened in Europe first is of course one of the most interesting questions of all, but it’s not one this book tries to answer.) Those enchanted objects of everyday life—those lightbulbs and lenses and audio recordings—are now a part of life just about everywhere on the planet; telling the story of the past thousand years from their perspective should be of interest no matter where you happen to live. New innovations are shaped by geopolitical history; they cluster in cities and trading hubs. But in the long run, they don’t have a lot of patience for borders and national identities, never more so than now in our connected world.

  I have tried to adhere to this focus because, within these boundaries, the history I’ve written here is in other respects as expansive as possible. Telling the story of our ability to capture and transmit the human voice, for instance, is not just a story about a few brilliant inventors, the Edisons and Bells whose names every schoolchild has already memorized. It’s also a story about eighteenth-century anatomical drawings of the human ear, the sinking of the Titanic, the civil rights movement, and the strange acoustic properties of a broken vacuum tube. This is an approach I have elsewhere called “long zoom” history: the attempt to explain historical change by simultaneously examining multiple scales of experience—from the vibrations of sound waves on the eardrum all the way out to mass political movements. It may be more intuitive to keep historical narratives on the scale of individuals or nations, but on some fundamental level, it is not accurate to remain between those boundaries. History happens on the level of atoms, the level of planetary climate change, and all the levels in between. If we are trying to get the story right, we need an interpretative approach that can do justice to all those different levels.

 

‹ Prev