Thinking in Pictures: My Life with Autism
Page 6
The Autistic Continuum
Countless researchers have attempted to figure out what factors determine the difference between high- and low-functioning autism. High-functioning children with Kanner's or Asperger's syndrome usually develop good speech and often do well academically Low-functioning children are often unable to speak or can say only a few words. They also have trouble learning simple skills such as buttoning a shirt. At age three, both types have similar behaviors, but as they grow older the difference becomes more and more apparent.
When my speech therapist held my chin and directed me to look at her, it jerked me out of my private world, but for others forcing eye contact can cause the opposite reaction—brain overload and shutdown. For instance, Donna Williams, the author of Nobody Nowhere, explained that she could use only one sensory channel at a time. If a teacher had grabbed her chin and forced eye contact, she would have turned off her ears. Her descriptions of sensory jumbling provide an important bridge to understanding the difference between high-functioning and low-functioning autism, which I would describe as a sensory processing continuum. At one end of the continuum is a person with Asperger's or Kanner's autism who has mild sensory oversensitivity problems, and at the other end of the spectrum is the low-functioning person who receives jumbled, inaccurate information, both visually and aurally.
I was able to learn to speak because I could understand speech, but low-functioning autistics may never learn to speak because their brains cannot discriminate among speech sounds. Many of these people are mentally retarded, but a few individuals may have a near-normal brain trapped inside a sensory system that does not work. Those who escape the prison of low-functioning autism probably do so because just enough undistorted information gets through. They do not totally lose contact with the world around them.
Twenty years ago, Carl Delacato, a therapist who worked with autistic children, speculated that low-functioning individuals may have “white noise” in their sensory channels. In his book The Ultimate Stranger, he described three kinds of sensory processing problems: hyper, hypo, and white noise. Hyper means oversensitive, hypo means undersensitive, and white noise means internal interference.
In questioning many people with autism, I soon found that there was a continuum of sensory abnormalities that would provide insight into the world of nonverbal people with autism. I imagine that the extent of sensory jumbling they experience would be equivalent to taking Donna's sensory problems and multiplying them tenfold. I am lucky in that I responded well when my mother, teachers, and governess kept encouraging social interaction and play. I was seldom allowed to retreat into the soothing world of rocking or spinning objects. When I daydreamed, my teachers yanked me back to reality.
Almost half of all very young children with autism respond well to gently intrusive programs in which they are constantly encouraged to look at the teacher and interact. Brightly colored wall decorations made learning fun for me, but they may be too distracting for a child with sensory jumbling. The popular Lovaas program, developed at UCLA, is being used successfully there to mainstream nearly half of young autistic children into a normal kindergarten or first grade. The Lovaas method pairs words with objects, and the children are rewarded with praise and food when they correctly match a word with an object. While this program is wonderful for some kids, it is certain to be confusing and possibly painful for children with severe sensory jumbling and mixing problems.
These children require a different approach. Touch is often their most reliable sense, and they learn best if teachers use a tactile system. One mother taught her nonverbal daughter to draw a circle by holding her hand and guiding it to make a circle. Plastic letters that can be felt are often useful for teaching words. The more protected these children are from distracting sights and sounds, the more likely it is that their dysfunctional nervous system will be able to perceive speech accurately To help them hear better, teachers must protect them from visual stimuli that will cause sensory overload. They may hear best in a quiet, dimly illuminated room that is free of fluorescent lights and bright wall decorations. Sometimes hearing is enhanced if the teacher whispers or sings softly. Teachers need to speak slowly to accommodate a nervous system that processes information slowly. And sudden movements that will cause sensory confusion should also be avoided.
Children who are echolalic—who repeat what they hear— may be at a midpoint on the sensory processing continuum. Enough recognizable speech gets through for them to be able to repeat the words. Dr. Doris Allen, at the Albert Einstein Hospital in New York, emphasizes that echolalia should not be discouraged, so as not to inhibit speech. The child repeats what has been said to verify that he heard it correctly. Research by Laura Berk, at Illinois State University, has shown that normal children talk to themselves to help them control their behavior and learn new skills. Since autism is caused by immature brain development, it is likely that echolalia and self-talking, which occur in older autistic children, are the result of immature speech patterns.
Unlike normal children, who naturally connect language to the things in their lives at a remarkable rate, autistic children have to learn that objects have names. They have to learn that words communicate. All autistic children have problems with long strings of verbal information. Even very high-functioning people have difficulty following verbal instructions and find it easier to follow written instructions, since they are unable to remember the sequence of the information. My college math teacher once commented that I took excessive notes. He told me that I should pay attention and understand the concept. The problem was that it was impossible for me to remember the sequence of the problems without the notes. I learned to read with phonics and sounding out words, because I was able to understand speech by age three. Children with more severe auditory processing problems often learn to read before they can speak. They learn best if a written word is paired with an object, because many of them have very poor comprehension of spoken words.
As an adult my method for learning a foreign language may be similar to how a more severely impaired autistic child learns to understand language. I cannot pick words out of a conversation in a foreign language until I have seen them written first.
Two basic patterns of autistic symptoms can help identify which children will respond well to intensive, gently intrusive teaching methods, and which will not. The first kind of child may appear deaf at age two, but by age three he or she can understand speech. I was this kind. When adults spoke directly to me, I could understand them, but when they talked among themselves, it sounded like gibberish. The second kind of child appears to develop normally until one and a half or two and then loses speech. As the syndrome progresses, the ability to understand speech deteriorates and autistic symptoms worsen. A child that has been affectionate withdraws into autism as his sensory system becomes more and more scrambled. Eventually he may lose awareness of his surroundings, because his brain is not able to process and understand sights and sounds around him. There are also children who are mixtures of the two kinds of autism.
Children of the first kind will respond well to intensive, structured educational programs that pull them out of the autistic world, because their sensory systems provide a more or less accurate representation of things around them. There may be problems with sound or touch sensitivity, but they still have some realistic awareness of their surroundings. The second kind of child may not respond, because sensory jumbling makes the world incomprehensible. Gently intrusive teaching methods will work on some children who lose their speech before age two if teaching is started before their senses become totally scrambled. Catherine Maurice describes her successful use of the Lovaas program with her two children, who lost speech at fifteen and eighteen months of age, in her book, Let Me Hear Your Voice. Teaching was started within six months of the onset of symptoms. The regression into autism was not complete, and her children still had some awareness. If she had waited until they were four or five, it is very likely that the Lovaas metho
d would have caused confusion and sensory overload.
My experience and that of others has shown that an effective teaching method coupled with reasonable amounts of effort should work. Desperate parents often get hooked into looking for magic cures that require ten hours a day of intensive treatment. To be effective, educational programs do have to be done every day, but they usually do not require heroic amounts of effort. My mother spent thirty minutes five days a week for several months teaching me to read. Mrs. Maurice had a teacher spend twenty hours a week on the Lovaas method with her children. In addition to participating in formal educational programs, young autistic children need a structured day, both in the school and at home. Several studies have shown that twenty to twenty-five hours a week of intensive treatment which required the child to constantly interact with his teacher was most effective. A neurologist gave my mother some very good advice: to follow her own instincts. If a child is improving in an educational program, then it should be continued, but if there is no progress, something else should be tried. Mother had a knack for recognizing which people could help me and which ones could not. She sought out the best teachers and schools for me, in an era when most autistic children were placed in institutions. She was determined to keep me out of an institution.
A controversial technique called facilitated communication is now being used with nonverbal people with autism. Using the technique, the teacher supports the person's hand while he or she taps out messages on a typewriter keyboard. Some severely handicapped people have problems with stopping and starting hand movements, and they also have involuntary movements that make typing difficult. Supporting the person's wrist helps to initiate motion of the hand toward the keyboard and pulls his fingers off the keyboard after he pushes a key to prevent perseveration and multiple pushing of a single key. Merely touching the person's shoulder can help him initiate hand movements.
Several years ago, facilitated communication was hailed as a major breakthrough, and wild claims were made that the most severely handicapped autistic people had completely normal intelligence and emotions. Fifty scientific studies have now shown that in the vast majority of cases, the teacher was moving the person's hand, as if it were a planchet on a Ouija board. The teacher was communicating, instead of the person with autism. A summary of forty-three studies in the Autism Research Review showed that 5 percent of nonverbal, severely handicapped people can communicate with simple one-word responses. In the few cases where facilitated communication has been successful, someone has spent many hours teaching the person to read first.
It is likely that the truth about facilitated communication is somewhere between wishful hand-pushing and real communication. Carol Berger, of New Breakthroughs in Eugene, Oregon, found that low-functioning autistics could achieve 33 percent to 75 percent accuracy in typing one-word answers. Some of the poor results in controlled studies may have been due to sensory overload caused by the presence of strange people. Reports from parents indicate that a few adults and children initially need wrist support and then gradually learn to type independently. But the person must know how to read, and facilitator influence cannot be completely ruled out until wrist or arm support is removed.
Parents who are desperate to reach their autistic children often look for miracles. It's hard not to get caught up in new promises of hope, because there have been so few real breakthroughs in the understanding of autism.
The Autistic Continuum
It appears that at one end of the spectrum, autism is primarily a cognitive disorder, and at the other end, it is primarily a sensory processing disorder. At the severely impaired sensory processing end, many children may be diagnosed as having disintegrative disorder. At a midpoint along the spectrum, autistic symptoms appear to be caused by equal amounts of cognitive and sensory problems. There can be mild and severe cases at all points along the continuum. Both the severity and the ratio of these two components are variable, and each case of autism is different. When a person with autism improves because of either educational or medical intervention, the severity of a cognitive or sensory problem may diminish, but the ratio between the two seems to stay the same. What remains inexplicable, however, are rigid thinking patterns and lack of emotional affect in many high-functioning people. One of the perplexing things about autism is that it is almost impossible to predict which toddler will become high-functioning. The severity of the symptoms at age two or three is often not correlated with the prognosis.
The world of the nonverbal person with autism is chaotic and confusing. A low-functioning adult who is still not toilet-trained may be living in a completely disordered sensory world. It is likely that he has no idea of his body boundaries and that sights, sounds, and touches are all mixed together. It must be like seeing the world through a kaleidoscope and trying to listen to a radio station that is jammed with static at the same time. Add to that a broken volume control, which causes the volume to jump erratically from a loud boom to inaudible. Such a person's problems are further compounded by a nervous system that is often in a greater state of fear and panic than the nervous system of a Kanner-type autistic. Imagine a state of hyperarousal where you were being pursued by a dangerous attacker in a world of total chaos. Not surprisingly, new environments make low-functioning autistics fearful.
Puberty often makes the problem worse. Birger Sellin describes in his book I Don't Want to Be Inside Me Anymore how his well-behaved son developed unpredictable screaming fits and tantrums at puberty. The hormones of adolescence further sensitized and inflamed an overaroused nervous system. Dr. John Ratey, at Harvard University, uses the concept of noise in the nervous system to describe such hyperarousal and confusion. Medications such as beta-blockers and clonidine are often helpful because they can calm an overaroused sympathetic nervous system.
Autistics with severe sensory problems sometimes engage in self-injurious behavior such as biting themselves or hitting their heads. Their sensory sensations are so disordered that they may not realize they are hurting themselves. Though a recent study by Reed Elliot published in the Journal of Autism and Developmental Disabilities showed that very vigorous aerobic exercise reduced aggression and self-injury in half of mentally retarded autistic adults, educational and behavioral training will help almost all people with autism to function better. Early intervention in a good program can enable about 50 percent of autistic children to be enrolled in a normal first grade. Though most autistics will not function at my level, their ability to live a productive life will be improved. Medication can help reduce the hyperarousal of many low-functioning older children and help them control their behavior. Many nonverbal autistics are capable of doing simple jobs such as washing windows or routine manual work. Few nonverbal autistic adults are able to read and are capable of doing normal schoolwork.
Many parents and teachers have asked me where I fit on the autistic continuum. I still have problems with rapid responses to unexpected social situations. In my business dealings I can handle new situations, but every once in a while I panic when things go wrong. I've learned to deal with the fear of traveling, so that I have a backup plan if, for example, my plane is late. I have no problems if I mentally rehearse every scenario, but I still panic if I'm not prepared for a new situation, especially when I travel to a foreign country where I am unable to communicate. Since I can't rely on my library of social cues, I feel very helpless when I can't speak the language. Often I withdraw.
If I were two years old today, I would be diagnosed with classic Kanner's syndrome, because I had delayed abnormal speech development. However, as an adult I would probably be diagnosed as having Asperger's syndrome, because I can pass a simple theory-of-mind test and I have greater cognitive flexibility than a classic Kanner autistic. All of my thinking is still in visual images, though it appears that thinking may become less visual as one moves along the continuum away from classic Kanner's syndrome. My sensory oversensitivities are worse than the mild difficulties some Kanner autistics have, but I do n
ot have sensory mixing and jumbling problems. Like most autistics, I don't experience the feelings attached to personal relationships. My visual world is a literal one, though I have made progress by finding visual symbols to carry me beyond the fixed and rigid worlds of other people with classic Kanner autism.
In an article written by Oliver Sacks in The New Yorker, I was quoted as saying, “If I could snap my fingers and be nonautistic, I would not. Autism is part of what I am.” In contrast, Donna Williams says, “Autism is not me. Autism is just an information processing problem that controls who I am.” Who is right? I think we both are, because we are on different parts of the autism spectrum. I would not want to lose my ability to think visually. I have found my place along the great continuum.
Update: Diagnosis and Education
Both parents and teachers make the mistake of thinking a diagnosis of autism, PDD (Pervasive Developmental Disorder), ADHD (Attention Deficit Hyperactivity Disorder), or Asperger's is precise. It is not precise the way a diagnosis for measles or meningitis is precise. It is a behavioral profile and different doctors and psychologists often come up with a different diagnosis because they interpret the child's behavior differently. At the time of writing this update, there is no definitive brain imaging or laboratory test for the diagnosis of autism.