Book Read Free

Before the Dawn: Recovering the Lost History of Our Ancestors

Page 10

by Nicholas Wade


  This conclusion emerges directly from the genealogies of the Y chromosome and the mitochondrial DNA. Men of each branch of the Y chromosome tree are mostly found in a particular geographic region. The same is true for mitochondrial DNA lineages. Some branches of the two trees are confined to a single continent. Others spread over several land masses, but in a way that tracks an orderly movement of population. If the world’s population were highly mixed, each of these branches would be found all over the place.

  Even today, most people in the world still belong to Y chromosome and mitochondrial DNA lineages that accurately reflect their continent of origin. Africans south of the Sahara belong to mitochondrial lineages L1, L2 and L3. All the rest of the world belongs to the two daughter lineages of L3 known as M and N.

  Lineage M is of particular interest in tracking the exodus from Africa. Silvana Santachiara-Benerecetti of the University of Pavia in Italy has found that M is quite common in people of the southern Arabian peninsula, but is not seen in the Levant.90 This is interesting evidence that the route out of Africa may have led through southern Arabia to India. It is not conclusive, however, because a vigorous Arab slave trade flourished between AD 650 and 1900 and brought many Africans to Arabia. The female slaves, who became integrated into Arab populations, could be the source of the M lineage.91

  Since men and women had to spread through the world together, the story told by the Y chromosome’s genealogy should match that of the mitochondrial DNA genealogy. The two stories do agree well in general outline, though not yet in every detail. The mutations that generate the Y chromosome’s genealogy were discovered more recently and are still under study. Mitochondrial DNA mutates at a faster rate than the Y chromosome and the dates derived for the branch points in its genealogical tree are generally older than those for the Y chromosome’s tree. It will take much more work to get dates of the two trees into correct alignment.

  Besides helping to track the movement of the first modern human emigrants around the globe, the two trees also record that only a small sample of the African population emigrated to the rest of the world, a conclusion also implicit in the fact of a single migration. On the female side, lineages L1 and L2 of the mitochondrial DNA tree remained confined to Africa, at least until modern times; only the M and N daughters of L3 left for the world beyond. On the Y chromosome genealogy, sons A and B of the Y tree never left Africa. Only the group of sons carrying a mutation known as M168 are found outside Africa. Presumably men of the M168 lineage accompanied the M and N lineage women as they and their descendants migrated from Africa to India.

  The emigration of modern humans from Africa was not only a watershed in history but also a significant demographic event. The few who left Africa carried only a small subset of the genetic diversity present in the ancestral human population. Genetic diversity refers to the number of alternative versions of each gene—known as alleles to geneticists—that exist in a population; each individual can carry up to two of these alleles, one inherited from each parent. For instance, a region of DNA associated with the insulin gene exists in 22 different versions in African populations, but only three of these occur outside Africa.92 The small size of the departing population would have increased the chances of its following a different evolutionary path from the host population in Africa because it created the conditions for the important kind of evolutionary change known as genetic drift.

  Natural selection is the better known agent of evolutionary change but drift is also powerful, and the smaller the population, the more quickly drift acts. The mechanism of drift is the purely random way in which about half of a parent’s genes get passed on to a child and half are discarded.e Depending on the luck of the draw, some versions of a gene become more common in a population as one generation succeeds another, while others grow rarer. Eventually one version of a gene may become universal while all the alternative versions are lost. This is what has happened in the cases of the Y chromosome and mitochondrial DNA. In terms of evolution’s overall process, drift is the counterpart to mutation. Mutation constantly injects novelty into the genome, and in each generation drift sweeps novelty away. Natural selection draws on this flux, using it to keep each species adapted to the changing environment.

  Since drift is random, the versions of a gene that it makes universal may be good or bad. For the most part, though, they are neutral, in geneticists’ parlance, because they make no difference to an organism’s survival. The smaller a population, the fewer generations it takes for a particular version of a gene to become universal. So drift would have been enhanced among the small group that left Africa and in its far-flung descendants as they spread out across the world. The human population as a whole probably existed for many millennia as small, largely separate groups, because distance and territoriality would have deterred any substantial mixing of peoples.

  Those who left Africa carried only a slice of the full genetic diversity of the human population, and the size of the slice allows an estimate to be made of the emigrants’ numbers. Sarah Tishkoff, a geneticist at the Univer sity of Maryland, has calculated that the number of modern humans who left Africa could have been as few as 160.93 Another estimate, made by geneticists working with mitochondrial DNA, is that the source population in Africa from whom all humans outside Africa are descended numbered at most 550 women of childbearing age, and probably considerably fewer.94

  Despite the appearance of precision, these numbers have wide ranges of error and are very approximate. The basic inference that can be drawn from them is that the ancestral group in Africa from which the first emigrants derived was very small, probably just a single band of hunter-gatherers. Such a band would number about 150 people if modern hunter-gatherer groups are typical of ancient ones. The group that left Africa would presumably have been this one band or a part of it.

  Peopling the Lost Continents of Sunda and Sahul

  By whichever route the first humans left Africa, India seems to have been their first major stopping point, because it is there that are found the first di versifications, outside Africa, of the mitochondrial and Y chromosome trees.

  In terms of the mitochondrial DNA tree, the M and N lineages that came out of Africa are still frequent in today’s Indian population. The M lineage is very common, and its mutations are older than those of M lineages found farther east, supporting the idea that the Indian subcontinent was settled soon after the African exodus. On the Y chromosome side, several offshoots of the early male lineages are restricted to the Indian subcontinent, a finding consistent with the scenario that the first settlers arrived by a southern route; those offshoots would be expected to occur in the Levant as well as India if the emigrants had taken the northern route out of Africa.95

  In India there was a historic parting of the ways. Some people continued the coast-hugging, population budding process along the southern shores of Asia, eventually reaching the Australian land mass, China and Japan. Others pushed inland in a northwesterly direction, through the lands that are now Iran and Turkey, and began the long contest with the Neanderthals for the possession of Europe. Both paths tested the power of the new modern people to innovate, survive in hostile surroundings, and overcome daunting obstacles. Consider first the migration to Australia, then the push into Europe.

  The group expanding along the coast pushed eastward around India and Indochina, eventually reaching the two lost continents of Sunda and Sahul. With sea level much lower 50,000 years ago than it is now, the Malay peninsula and the islands of Sumatra, Java and Borneo formed a single land mass known as Sunda or Sundaland, which was a southern extension of the Asian land mass. Australia was then connected to New Guinea in the north and to Tasmania in the south, the three islands forming the lost continent known as Sahul, directly south of Sunda.

  Apart from fording river mouths, the people expanding along the coastline would not have had to cross open sea until they reached the channel between Sunda and Sahul. This would have been a formidable barrier, some 60
miles wide. Forest fires in Sahul, or the flights of birds, may have indicated the presence of land to watchers from Sunda. In any event, modern humans reached Sahul, an achievement that puts beyond doubt their possession of the seafaring skills required to cross the Gate of Grief as a way out of Africa.

  The arrival of the first modern humans in Australia is an important event, not just because they had accomplished an epic migration from their distant homeland in East Africa, but also because it offers one of the first opportunities to link genetic history with archaeological history. On the basis of burials, archaeologists believe Australia was settled shortly after 50,000 years ago. This period is beyond the reach of the radiocarbon method of dating, so an alternative method must be used, known as thermoluminescence. The method is not always reliable but in this case is supported by independent evidence: by 46,000 years ago, all large Australian mammals, birds and reptiles weighing more than 220 pounds had suddenly fallen extinct.96 The reason was almost certainly the activity of a vigorous new predator, human hunters. The large animals of the Americas were to undergo a similar extinction shortly after the first hunters reached the New World.

  It is perhaps surprising that Australia should hold the earliest archaeological sites outside Africa in which the presence of modern humans has so far been established. The likely reason is the comparative ease of migrating along the coastline instead of venturing inland. The sea route provided a reliable source of food and an easy means of travel, save for crossing the Sunda-Sahul passage. Since sea level was then much lower and many former coastal sites are now submerged, that could explain why no intermediate stages of the journey have yet come to light.

  Many geneticists believe that the first modern humans came out of Africa considerably earlier than 50,000 years ago. Dating based on the rate of mutation seen in the tree of human mitochondrial DNA suggests that modern humans first left Africa 65,000 years ago, according to a recent calculation. 97 But genetic dates, though always interesting, depend on many assumptions that may not be realistic, and the dates derived by archaeologists are considerably more reliable. Archaeologists can at present see no sign of modern human presence outside Africa before 46,000 years ago, the date of the Lake Mungo site in southeastern Australia, and sites of similar age in the Levant. They have little patience with the geneticists’ proposals that sites of earlier occupation along ancient coastlines now lie beneath sea level, since rather than wait to be engulfed by slowly rising sea levels, people would surely have built new settlements farther inland.

  It’s possible, of course, that the modern humans leaving Africa really were confined to the water’s edge by the archaic humans who had settled Eurasia many thousands of years beforehand. The Neanderthals may have been present at times in the Arabian peninsula and Homo erectus occupied East Asia. Though the archaic humans may at first have been able to prevent modern humans from penetrating Eurasia, forcing them to skirt the periphery, the archaics themselves never reached Sahul. That could perhaps account for the odd fact that the oldest modern human remains come from the place at the remotest part of the journey, Australia.

  Another reason for Australia being the first recorded landfall, however, is climate. The ancestral population was not adapted to northern climates. As discussed further in chapter 6, people may have needed to evolve special adaptations to colonize the colder regions of Eurasia. The first emigrants may have been confined by climate to the coasts of East Asia and warmer regions like Sunda and Sahul.

  Be this as it may, the archaeologists are probably correct in their position that modern humans should not be assumed to have left Africa any earlier than 50,000 years ago, a date that is consistent both with the behavioral changes evident from archaeological sites within Africa, and with the date, 46,000 years ago, at which modern humans were clearly present in Australia.

  But if archaeologists are right on the date of exit, geneticists may have the better case on the number of migrations: just one.

  Because Sahul lies so far off the beaten track, away from the subsequent movements and mixings of the human population, Australia’s aboriginal tribes may hold in their genes a fascinating portrait of the first emigrants from Africa. But differences in the robusticity of early skeletons, and the arrival of people with a semi-domesticated dog (the dingo), suggest that several extra waves of immigrants reached Australia after the first one. Because of political constraints on taking samples from aboriginal peoples, it’s at present impossible to sort out these various waves of early immigrants as fully as geneticists would like.

  Before the arrival of Europeans in Australia, the original inhabitants were divided into some 600 tribes, each composed of some 500 to 1,000 people and possessing its own dialect and territory. These tribes seem to have married within themselves, with little gene flow between them, and because of their antiquity each built up a distinctive genetic profile with special variants not seen elsewhere in the world. An analysis of mitochondrial DNA from the Walbiri tribe of the Northern Territory showed they possessed several lineages not found among any other tribe, indicating a considerable degree of genetic differentiation between them.98

  In contrast to the diversity of mitochondrial DNA types, there are far fewer Y chromosome variations, with half of all male aborigines carrying one with the same distinctive genetic signature. This may result from what geneticists call a founder effect—the reduced genetic diversity of populations founded by a small number of individuals.99 Other factors may also have been at work. Polygamy, when some men have many wives and others none, is a powerful reducer of diversity among Y chromosomes. So too is frequent warfare, the burden of which is borne by men.

  Australian aboriginal tribes seem to have lived in a state of constant warfare, with defended territories and neutral zones marked for trading. Their tool kit, designed for easy transport over long distances, included weapons like heavy war clubs, a special hooked boomerang, and spear-throwers.100 The tribes were skillful at surviving in a harsh environment but never developed agriculture. Their special genetics reflects both their antiquity and the effects of genetic drift, promoted by the fragmentation of their population into small warring societies.

  Genetic analysis has yielded similar insights into the lifestyle of another of Sahul’s early occupants, the people of New Guinea. Australia and New Guinea were joined until about 8,000 years ago, so the peoples of both places may be descendants of the same migration. Mark Stoneking and colleagues analyzed both the Y chromosome and mitochondrial DNA from people in many New Guinean tribes and found a striking lack of diversity of Y chromosome lineages, especially in the highland tribes of the Dani, Yali, Una and Ketengban.101 As with the Australian aborigines, reduced diversity could mean either a high degree of polygamy, with just a few men fathering most of a community’s children, or a high rate of death in battle.

  Both factors seem to have been at work in New Guinean society. All Papuan speaking populations in New Guinea practice patrilocality, with the men staying in their native clan and the women moving to their husband’s clan. Most, if not all, New Guinea tribes practiced polygamy, at least until the missionaries arrived. Among the Dani, for example, 29% of the men had more than one wife, the range being from two to nine, while 38% of the men were not married.

  Warfare was common in most Papuan societies until the second half of the twentieth century, Stoneking and his colleagues note, and casualty rates were high—about 29% of Dani men were killed in warfare, according to the anthropologist Karl Heider. This death rate is very similar to the male battle casualties among both chimpanzees and the Yanomamo of South America and presumably is driven by the same motive, the reproductive advantage gained by the successful warrior for himself and his male kin.

  Warfare among hunter-gatherers is deceptively mild compared with the explosive carnage of modern battlefields. Battle may be opened but called off, like a ball game, if rain stops play, or someone is seriously injured. Heider, like many anthropologists, believed at first that warfare among t
he Dani was not a terribly serious affair. After his first field trip to New Guinea in 1961 he wrote a book entitled Grand Valley Dani: Peaceful Warriors. But after revisiting the Dani for many years, and reconstructing careful genealogies and causes of death, he realized how many men in fact died in battle. If you fight every week, even low casualty rates start to mount.

  Like the !Kung San, the Dani fight to kill. They have not discovered how to daub their arrows with a poison like that of the chrysomelid beetles, but they use excrement instead, hoping to cause infection. Like many other human groups and the chimpanzees of Gombe and Kasakela, the Dani know that killing a few of the enemy leaves the remainder thirsting for revenge, so a more effective solution is extermination.

  “About 30 percent of all independent highland social groups become extinct in each century because they are defeated,” the archaeologist Steven LeBlanc writes of New Guinea tribal warfare. “These groups are either mas sacred or killed, or the survivors of a particularly deadly encounter flee and take refuge with trading partners or distant relatives. This last place on Earth to have remained unaffected by modern society was not the most peaceful but one of the most warlike ever encountered.”102

  The physical appearance of Australian aborigines is termed australoid, meaning that they have dark skin, wavy or curly hair, slender body build and large teeth. New Guineans are australoid but with minor differences, such as tightly curled hair. That the people of Sahul should look somewhat like sub-Saharan Africans is probably no accident. Because of their relative isolation, australoid peoples may be closer to the first emigrants than are most other living people. But they cannot exactly represent the first modern humans who left Africa because their population includes later immigrants, such as Polynesians, and they have themselves changed a lot through genetic drift.

 

‹ Prev