The Science of Discworld III - Darwin's Watch tsod-3
Page 21
Perhaps this feeling is misleading, but it's silly to insist that absolutely everything in a slightly divergent future has to end up different.
Organic evolution has lessons for us here, and these lessons can instruct us about how likely various advances in animal organisation were. Innovations like insect wings, vertebrate jaws, photosynthesis, life coming out from the seas on to the land ... if we ran evolution on Earth again, would the same things happen? If we went back to the beginning of life on this planet, and killed it, would another system evolve and give us a whole different range of creatures, or would Earth remain lifeless? Or would we be unable to decide whether we'd done anything, because everything would be just the same the second time around?
If history `healed up', we wouldn't be able to tell if it was the second, or the hundredth, or the millionth time around - each time sooner or later producing a version of us, whose time machine goes back to The Origin. There would be a consistent time loop, as happened with the Elves in The Science of Discworld II. If life is `easy' to originate (and the evidence does look that way) then this isn't an exercise in going back and killing your grandfather, or if it is, your grandfather is a vampire and doesn't remain killed. If life is easy to invent, then preventing it happening once, or a million times, will make no difference in the long run. The same process that generated it will happen again.
Looking at the panorama of life on this planet, in time as well as space, we can see that there are two kinds of evolutionary innovation. Photosynthesis, flight, fur, sex, and jointed limbs have all arisen independently in several different lineages. Surely, like toilet paper, we would expect to see them again each time we ran life on Earth.
And, presumably, we'll see them on other aqueous planets when we explore our local region of the galaxy. Such evolutionary attractors are called `universals', in contrast to 'parochials': unlikely innovations that have happened only once in Earth's history.
The classic parochial is the curious suite of characters possessed by land vertebrates, because a particular species of Devonian fish succeeded in invading the land in our, real, history. Those fishes' descendants were amphibians, reptiles, birds, and mammals - including us. Jointed limbs are a universal innovation. The limbs of spiders, hydraulically operated, differ in detail from the limbs of mammals, and were presumably acquired via a different ancestor, perhaps an earlier arthropod proto-spider. The mammalian internal skeleton, with one bone at the body end, then two, then a wrist or ankle, then five lines of bones for fingers or toes, was an independent evolution of the same universal trick.
This highly unlikely combination now occurs in all land vertebrates (except most of the legless ones), because they are all descended from those fishes that came out of the water to colonise the land. Other parochials are feathers and teeth (of the kind that evolved from scales, which are what we have). And, especially, each of the special body-plans that characterise Earth's animals and plants: mammal, insect, rotifer, trilobite, squid, conifer, orchid ... None of these would appear again after a rerun of Earth's evolutionary history, nor would we find exact replicas on other aqueous planets.
We would expect much the same processes to occur, though, in a repeat run of Earth or on another similar world: an atmosphere far from chemical equilibrium as life forms pump up their chemistry using light; planktonic layers of the seas colonised by the larvae of sedentary animals; flying creatures of many kinds. Such ecosystems would also probably have `layers', a hierarchical structure, fundamentally similar to the ecosystems that have emerged in so many different circumstances on Earth. So there would be 'plantlike' creatures, a productive majority of the biomass (like Earth's grass or marine algae). These would be browsed by tiny animals (mites, grasshoppers) and by larger animals (rabbits, antelopes), with a few very large creatures (elephants, whales). Comparable evolutionary histories would lead to the same dramatic scenarios, but performed by different actors.
The central lesson is that although natural selection has a very varied base to work with (recombinations of ancient mutations, differently assorted in all those `waste' progeny), clear large-scale themes emerge. Marine predators, such as sharks, dolphins, and ichthyosaurs all have much the same shape as barracuda, because hydrodynamic efficiency dictates that streamlining will catch you more prey, more cheaply. Very different lineages of planktonic larvae all have long spines or other extensions of the body to restrain the tendency to fall or rise because their density differs from that of seawater, and most of them pump ions in or out to adjust their densities too. As soon as creatures acquire blood systems, other creatures - leeches, fleas, mosquitoes - develop puncture tools to exploit them, and tiny parasites exploit both the blood as food and the bloodsuckers as postal systems. Examples are malaria, sleeping-sickness, and leishmaniasis in humans, and lots of other parasitic diseases in reptiles, fishes, and octopuses.
Large-scale themes may be the obvious lesson, but the last examples reveal a more important one: organisms mostly form their own environments, and nearly all of the important context for organisms is other organisms.
Human social history is like evolutionary history. We like to organise it into stories, but that's not how it really works. History, too, can be convergent or divergent. It seems quite sensible to believe that small changes mostly get smeared out, or lost in the noise, so that big changes are needed to divert the course of history. But anyone familiar with chaos theory will also expect some tiny differences to set off divergent histories, drifting progressively further away from what might have happened otherwise.
Changing history is a theme of time-travel stories, and the two issues come together in those stories called `worlds of if.
We have the strongest feeling that what we do, even what we decide, does change history. If I decide, now, not to go and meet Auntie Janie at the train station even though she's expecting me because I told her I would ... the universe will take a different path from the one it would have taken if I had done the expected. But we've just seen that even saving Abraham Lincoln from the assassin would have the tiniest, most local, of effects. Neighbours such as the gas-bag aliens on Jupiter wouldn't notice Lincoln's survival at all, or at least not for a very long time. After all, we haven't yet noticed them[45].
In fact, how will they, or we, notice? How will we be able to say, `Just a minute, this newspaper shouldn't be called the Daily Echo ... There must have been a time traveller interfering, so that we're now in the wrong leg of the Trousers of Time'?
Auntie Janie making her own way from the station won't topple empires - unless you believe, with Francis Thompson's The Mistress of Vision, that All things by immortal power Near or far Hiddenly To each other linked are That thou canst not stir a flower Without troubling of a star.
That is, all contingent chaos butterflies are responsible in some sense for all important events like hurricanes and typhoons - and newspaper titles. When a typhoon, or a newspaper tycoon, topples an empire, that event is caused by everything, all those butterflies, that preceded it. Because change in any one - or perhaps just in one of a very large number - can derail the important event.
So everything must be caused by everything before it, not just by a thin string of causality.
We think about causality as a thin string, a linear chain of events, link following link following link ... probably because that's the only way we can hold any kind of causal sequence in our minds. As we'll see, that's how we deal with our own memories and intentions, but none of this means that the universe can isolate such a causal string antecedent to any event at all, important or not. And surely 'important' or `trivial' is usually human judgement, unless the universe really does `smear out' most small changes (whatever that means), and major events are those whose singular influence can be distinguished at later times.
Because they are stories, committed to the way our minds work and not to the way the universe works its own causality, most timetravel stories assume that a big (localised) change is needed to have a b
ig effect - kill Napoleon, invade China ... or save Lincoln. And time travel stories have another convention, another `conceit', because they are stories, nearer fee-fi-fo-fum than physics. This is the remembered timeline of the traveller. Usually the plot depends on it being unique to him. When he comes back to his present he remembers stepping on the butterfly, or killing his grandfather, or telling Leonardo about submarines. .. but no one else is conscious of anything other than their `altered' present.
Let's move from large events, large or small causes, to how we influence the apparent causality in our own lives. We have invented a very strange oxymoron to describe this: `free will'. These words appear prominently on the label of the can of worms called `determinism'. In Figments of Reality we titled the free will chapter: `We wanted to have a chapter on free will, but we decided not to, so here it is' in order to expose the paradoxical nature of the whole idea. Dennett's recent book Freedom Evolves is a very powerful treatment of the same topic. He shows that in regard to `free will' it doesn't matter whether the universe, including humans, is deterministic. Even if we can do only what we must, there are ways to make the inevitable evitable. Even if it is all butterflies, if tiny differences chaotically determine large historical trends, nevertheless creatures as evolved as us can have `the only free will worth having', according to Dennett. He writes of dodging a baseball coming for his face, and this being perhaps a culmination of a causal chain going right back to the Big Bang - yet if it will help his team, he might let it hit his face.
But then, what decides it is: will it help his team? That's not a free choice.
Inevitable, evitable.
Dennett's best example is more ancient: Odysseus's ship approaching the Sirens. Inevitably, if his men hear the Sirens' song, they will steer the ship on to the rocks. But the steersman must be able to hear the surf, so there seems no way to avoid their lure. Odysseus has himself lashed to the mast, while all his sailors plug their ears with wax so they cannot hear the Sirens. The vital issue for Dennett is that humans, and on this planet probably only humans, have evolved several stages beyond the observing-and-reacting that even quite advanced animals do. We observed ourselves and others observing, so got more context to embed our behaviour in - including our prospective behaviour. Then we developed a tactic of labelling good and bad imaginary outcomes, just as we labelled our memories with emotional tags. We, and some other apes - perhaps also dolphins, perhaps even some parrots - developed a `theory of mind', a way to imagine ourselves or others in invented scenarios and to anticipate the associated feelings and responses. Then we learned to run more than one scenario: `But on the other hand, if we did so-and-so, the lion couldn't get us anyway...', and that trick soon became a major part of our survival strategy. So with Odysseus ... and fiction ... and particularly that dissection of hypothetical alternatives that we call a time-travel story.
In our minds, we can hold many possible histories, just as Mead showed that every discovery about today implies a different past leading up to it. But whether there is any sense in which the universe has several possible pasts (or futures) is a much more difficult question. We've argued that popularisations of quantum indeterminacy, particularly the many-worlds model, have got confused about this. They tell us that the universe branches at every decision point, whereas we think that people have to invent a different mental causal path, a different explanatory history, for each possible present or future.
Antonio Damasio has written three books: Looking for Spinoza, Descartes' Error, and The Feeling of What Happens. These are popular accounts of what we know about the important attributes of our minds. He has documented our discoveries, now that we can use various experimental techniques to `watch the brain thinking' and see how the different parts of the brain are involved in what we feel about the things we think. We tend to forget that our brains are continually interacting with our bodies, which supply the brain with stance-determining hormones for longer-term behaviour, and moodchanging emotion-provoking chemicals for short-term modulation of our intentions and feelings, directing our thoughts.
According to these books, the result of having lived with a brain which we think we direct using a kind of tiller, but which actually is continually affected by cross-winds, occasional storms, rain and warm sun that provokes us into lazy days, is that we have evolved a series of memories with different flavours. Or, the result of having lived with a brain that we think we direct using a kind of automobile steering wheel and foot controls, but whose route is actually continually affected by long-term goals that change (`Let's go to a hotel, not to Auntie Janie's again'), short-term road signs and other traffic, is that we have evolved a series of memories with different flavours. Or, each of us has a personal history which we explain internally by feelings attached to emotional memories, so we have evolved a series of memories with different flavours.
Damasio has imported emotional biasing into how we think about our own intentions, choices, other people, memories, and prospective plans. He claims that this is what emotion is `for', and most psychologists now agree that emotionally labelled memories are the effect of having a brain whose interaction with its body paints emotions on to memories and intentions.
We habitually assume that real physical history, and particularly social history, works the same way as our own personal histories, with events labelled `good' or `bad' ... but it doesn't. It's misleading to think of the Big Bang, for example, as an explosion like a bomb or a firework, seen from outside. The whole point of the Big Bang metaphor is that at the moment the universe was bom, there was no outside. More subtly, perhaps, we tend to think of the birth of the universe in the same way that we think of our own birth, or even our conception.
Real history, post whatever the Big Bang `really' was, relies on the accumulation of countless tiny sequences of cause-and-effect. As soon as we begin to think about what any of these sequences looks like, taking it out of the context that drives it, we lose its causality. This seething sea of processes and appearances and disappearances, where no causality can be isolated, is sometimes called `Ant Country'. The name reflects three features: the seething, apparently purposeless activity of ants, which, in aggregate, makes ant colonies work; the metaphorical Aunt Hillary in Douglas Hofstadter's Godel, Fscber, Bach, who was a sentient anthill and recognised the approach of her friend the anteater because some of her constituent ants panicked; and Langton's Ant, a simple cellular automaton, which shows that even if we know all the rules that govern a system, its behaviour cannot be predicted except by running the rules and seeing what happens. Which in most people's book is not `prediction' at all.
For similar reasons, it is impossible to forecast the weather accurately, even a few weeks ahead. Yet, despite this apparent absence of causality at the micro-levels of weather, the impossibility of isolating causality in the swirling butterflies ... despite the chaotic nature of meteorology in both the large and the small, weather makes sense. So does a stone tumbling downhill. So does a lot of physics, engineering, and aeronautics: we can build a Boeing 747 that flies reliably. Nevertheless, all of our physical models are rooted in brains that get most of their perceptions wrong.
Shouting at the monkeys in the next tree. That's what brains evolved to do. Not mathematics and physics.
We get ecology and evolution mostly right, but often wrong, for the same reasons. The scenarios we build don't work, they're as false to fact as `weather'. But we can't help building them, and they're useful sufficiently often to be `good enough for government work'.
To underline this point, here's an important evolutionary example. Think of the first land vertebrate, that fish that came out of the water. We have the strongest feeling that if we took a time machine back to the Devonian, when that first important fish was emerging from the sea, there ought to be a moment that we could isolate: `Look, by wriggling out on to the mud that female has escaped that predator, so she's lived to lay her eggs, and some of them will become our ancestors ... If she hadn't got those l
eggy fins, she wouldn't quite have made it, and we wouldn't be here.'
Grandfather paradox again? Not quite, but we can illuminate the grandfather paradox neatly with this example. Ask yourself what would happen if you killed that fish. Would humanity never have happened? Not at all. By isolating a single event, we have tried mentally to make history follow a thin thread of causality. But we made the Adam-and-Eve mistake: ancestors don't get fewer as you go back, they multiply. You have two parents, four grandparents, maybe only seven great-grand parents, because cousin marriages were commoner then. By the time you've gone back a couple of dozen generations, a significant proportion of all the breeders of that period were your ancestors. That's why everyone finds some famous ancestors when they look - and the fact that famous people were rich and powerful and sexually successful helps too, so that they are reproductively better represented in that generation's descendants.
Note that we said `breeders' and `many'. Nearly all sexually produced creatures don't breed, including humans of most previous generations. Not only are most of the people alive at that previous generation young children who won't survive to breed; many of the apparently successful breeders contribute to lineages that die out before they get to the present day, because they are excluded from the limited ecosystem by more successful lineages as the generations pass.
So when we look at those Devonian fishes, there simply isn't just one that was our ancestor. All of the breeders, a very unsystematic small proportion of the fish population, contributed to the recombining and mutating mix of genes that passed down from those fishes that left the water, through generations of amphibians and mammallike reptiles, into the early mammals, were newly selected to characterise the early primates, and eventually ended up in us. There wasn't a single grandfather fish, or one grandfather primate, no thin line of descent, just as there isn't a thin line of causality leading from a butterfly's wing flap to a hurricane. Nearly any fish you went back and killed would make virtually no difference to history. We'd still be here, but history would have taken a slightly different route to get to us.