Book Read Free

Fermat's Last Theorem

Page 27

by Simon Singh


  Yutaka Taniyama and his time, by Goro Shimura, Bulletin of the London Mathematical Society 21 (1989), 186–196. A very personal account of the life and work of Yutaka Taniyama.

  Links between stable elliptic curves and certain diophantine equations, by Gerhard Frey, Ann. Univ. Sarav. Math. Ser. 1 (1986), 1–40. The crucial paper which suggested a link between the Taniyama–Shimura conjecture and Fermat’s Last Theorem.

  Chapter 6

  Genius and Biographers: the Fictionalization of Evariste Galois, by T. Rothman, Amer. Math. Monthly 89 (1982), 84–106. Contains a detailed list of the historical sources behind Galois’s biographies, and discusses the validity of the various interpretations.

  La vie d’Evariste Galois, by Paul Depuy, Annales Scientifiques de l’Ecole Normale Supérieure 13 (1896), 197–266.

  Mes Memoirs, by Alexandre Dumas, 1967, Editions Gallimard.

  Notes on Fermat’s Last Theorem, by Alf van der Poorten, 1996, Wiley. A technical description of Wiles’s proof aimed at mathematics undergraduates and above.

  Chapter 7

  An elementary introduction to the Langlands programme, by Stephen Gelbart, Bulletin of the American Mathematical Society 10 (1984), 177–219. A technical explanation of the Langlands programme aimed at mathematical researchers.

  Modular elliptic curves and Fermat’s Last Theorem, by Andrew Wiles, Annals of Mathematics 141 (1995), 443–551. This paper includes the bulk of Wiles’s proof of the Taniyama–Shimura conjecture and Fermat’s Last Theorem.

  Ring-theoretic properties of certain Hecke algebras, by Richard Taylor and Andrew Wiles, Annals of Mathematics 141 (1995), 553–572. This paper describes the mathematics which was used to overcome the flaws in Wiles’s 1993 proof.

  You can find a set of websites about Fermat’s Last Theorem on Simon Singh’s website:

  [http://www.simonsingh.com]

  Index

  The pagination of this electronic edition does not match the edition from which it was created. To locate a specific passage, please use the search feature of your e-book reader.

  Page numbers in italic refer to illustrations

  Abel, Niels Henrik 3

  absolute proof 21–7, 147

  absurdities, mathematical 143, 341

  Academy of Sciences, French 119, 238

  prize for proving Fermat’s Last Theorem 120–28

  ACE (Automatic Computing Engine) 175

  Adleman, Leonard 104

  Adler, Alfred 2

  Agnesi, Maria 109–10, 111, 119

  Alexandria 47–9, 57–8, 109

  Alexandrian Library 48–9, 57–8

  Algarotti, Francesco 112

  algorithms 81

  amicable numbers 62–3

  Anglin, W. S. 77

  Annals of Mathematics 303

  April fool e-mail 293–5

  Arago, François 79

  Arakelov, Professor S. 254

  Archimedes 48, 112

  Aristotle 59

  arithmetic algebraic geometrists 254–5

  Arithmetica (Diophantus) 42, 57, 58, 60, 61, 62

  Clément-Samuel Fermat’s edition 68–9, 70

  and elliptic equations 184

  Fermat’s marginal notes 62, 66–7, 70, 89

  Latin translation 56, 61, 62

  and Pythagorean triples 65

  axioms 21, 149, 155, 156

  of arithmetic 342–3

  consistency of 159–60

  Babylonians 7–8, 20, 59

  Bachet de Méziriac, Claude Gaspar 61–2

  Latin translation of Arithmetica 56, 61, 62

  Problèmes plaisants et delectables 61

  weighing problem 61, 337–8

  Barnum, P. T. 138

  Bell, Eric Temple 6, 30, 33, 39, 73, 115

  Bernoulli family 79–80

  birthdays, shared, probability of 44–5

  Bombelli, Rafaello 93–4

  Bonaparte, Napoleon 117, 124, 232, 234

  Bourg-la-Reine 232, 234, 238

  Brahmagupta 59

  bridges, mathematical 212

  Bulletin of the London Mathematical Society 207

  calculus 18, 46–7

  Cantor, Georg 101–2

  Cardano, Girolamo 40–41

  Carroll, Lewis 138

  Cauchy, Augustin Louis 120–28, 122, 238, 239

  chessboard, mutilated, problem of 24–6

  Chevalier, Auguste 245, 248

  Chudnovsky brothers 51

  Churchill, Sir Winston Leonard Spencer 174

  cicadas, life-cycles 106–7

  Circle Limit IV (Escher) 200, 201

  City of God, The (St Augustine) 12

  Clarke, Arthur C. 23

  clock arithmetic 185–8

  closed groups 250–51

  Coates, John 180, 182, 183, 189, 211,226,229, 260, 266,270, 284, 303–4

  code breaking 103–5, 168, 170–75

  Cohen, Paul 162–3

  Colussus (computer) 175

  commutative law of addition 149

  completeness 91–2, 149–50, 160

  complex numbers 95, 126

  computers

  early 175, 176

  unable to prove Fermat’s Last Theorem 177–8

  unable to prove Taniyama–Shimura conjecture 231

  conjectures 72

  unifying 305

  Constantinople 60

  continuum hypothesis 163

  contradiction, proof by 49–50, 53–4, 155

  Conway, Professor John H. 291

  Coolidge, Julian 39

  cossists 40

  counting numbers 11

  Cretan paradox 161

  Croton, Italy 9, 27–8

  cryptography 103–5, 168, 170–75

  crystallography 199, 310

  cubic equations 237

  Curiosa Mathematica (Dodgson) 138

  Cylon 27–8

  d’Alembert, Jean Le Rond 96

  Dalton, John 22

  Darmon, Henri 294, 295

  Deals with the Devil 74

  defective numbers 11

  slightly 13

  Descartes, René 41, 42, 63, 249

  Deuring 192

  Devil and Simon Flagg, The 37, 74

  d’Herbinville, Pescheux 243, 247, 248

  Diderot, Denis 82–3

  differential geometry 254, 256

  Diffie, Whitfield 104

  Digby, Sir Kenelm 38, 64

  Diophantine problems 57

  Diophantus of Alexandria 55, 57

  riddle of his age 55, 57, 336–7

  Diophantus’ Arithmetica Containing Observations by P. de Fermat 68–9, 70

  Dirichlet, Johann Peter Gustav Lejeune 116, 127, 188

  disorder parameters 140–42

  Disquisitiones arithmeticae (Gauss) 115

  Dodgson, Reverend Charles 138

  domino effect 232

  dot conjecture problem 128–9, 339–40

  du Motel, Stéphanie-Félicie Poterine 243, 248

  Dudeney, Henry 138

  Dumas, Alexandre 241–2

  E-series 188–9, 204–5, 211, 251–3

  École Normale Supérieure 240

  École Polytechnique 113–14, 236

  economics, and calculus 46

  Eddington, Sir Arthur 133

  Egyptians, ancient 7–8

  Eichler 195

  Eiffel Tower 119

  Einstein, Albert 17, 18, 110

  electricity, and magnetism 204–5

  Elements (Euclid) 49, 53, 55, 125

  elephant and tortoise fable 160

  Elkies, Noam 179, 293–5

  elliptic curves 183

  elliptic equations 183–5, 187–9, 202

  families of 261, 265

  Frey’s elliptic equation 216–19, 221–2

  and modular forms 202, 204–5, 209–15, 305

  Enigma code 168–74

  Epimenides 161

  Escher, Mauritz 201

  Euclid

  infinite number
of Pythagorian triples proof 65, 338

  infinity of primes proof 100–101

  and perfect numbers 13

  proves that 2 is irrational 53. 334–6

  and reductio ad absurdum 49, 53–4

  unique factorisation proof 125

  Euler, Leonhard 33, 63, 76

  attempts to solve Fermat’s Last Theorem 88–9, 90, 96

  blindness and death 96–8

  forsakes theology 79–80

  and Königsberg bridge puzzle 83–5

  phases of the moon algorithm 81–2, 97

  proves existence of God 82–3

  proves network formula 85–8

  solves prime number theorem 70–71

  Euler’s conjecture 178–9

  Evens, Leonard 284

  Eves, Howard W. 225

  excessive numbers 11

  slightly 13–14

  factorisation, unique 125–6

  Faltings, Gerd 255–6, 257, 300

  Fermat, Clément-Samuel 67, 70

  Fermat, Pierre de 36

  amateur mathematician 39

  Arithmetica 61, 62, 65–7

  calculus 46–7

  career in civil service 37–9, 60–61

  death 67

  education 37

  and elliptic equations 184

  and Father Mersenne 41–2

  ill with plague 38–9

  observations and theorems 70–73

  probability theory 43–4, 45–6

  reluctant to reveal proofs 42

  Fermat’s Last Theorem

  challenge of 72–4

  computers unable to prove 177–8

  Miyaoka’s ‘proof 254–7

  partial proofs by computer 177

  Germain’s method 115–17

  n = 3 (Euler) 90, 96, 99

  n = 4 (Fermat) 89–90, 98–9

  n = 5 (Dirichlet and Legendre) 116

  n = 7 (Lamé) 116

  n = irregular prime (Kummer and Mirimanoff) 176–7

  publication of 70

  and Pythagoras’ equation 32, 65–7

  scepticism as to existence of proof 128

  simplicity of statement 6, 73

  and Taniyama–Shimura conjecture 216–19, 221–3, 266

  and undecidability 163–4, 166

  why called ‘Last’ 72

  Wiles’s proof see Wiles, Andrew

  Fermatian triple 66

  finite simple groups Flach, Matheus 260

  four-colour problem 319–26

  four-dimensional shapes 255–6

  four-dimensional space 201

  Fourier, Jean Baptiste Joseph 239

  ‘14–15’ puzzle 139–42, 219

  fractions 11, 53, 90–91

  Frege, Friedrich Ludwig Gottlob 150, 152, 154

  Frey, Gerhard 215–19

  Frey’s elliptic equation 216–19, 221–2

  friendly numbers 62–3

  fundamental particles of matter 22–3

  fundamental theorem of arithmetic 125

  fundamental truths 148–9

  Furtwängler, Professor P. 157, 159

  Galileo Galilei 39

  Galois, Évariste 3, 233

  birth 232

  duel with d’Herbinville 243, 247, 248

  education 234–6, 240

  final notes 243, 244, 245, 246, 247, 248

  funeral 247–8

  and group theory 250–51, 252–3

  and quintic equations 238, 239–40, 245, 248–9

  revolutionary career 238–9, 240–43

  game theory 167–8, 343–4

  Gardner, Martin 63, 146

  Gauss, Carl Friedrich 114–15, 116, 117–18, 119, 179

  geometry 7–8, 322

  rubber-sheet 322

  Gerbert of Aurillac 60

  Germain, Sophie 107, 108, 111–14, 119

  career as a physicist 118–19

  and Évariste Galois 240–41

  relationship with Gauss 117–18, 119

  strategy for Fermat’s Last Theorem 115–17

  Gibbon, Edward 109

  Globe, Le 239

  Gödel, Kurt 146, 157, 158, 159

  undecidable statements 159–63

  Goldbach, Christian 90

  Gombaud, Antoine 43–4

  Government Code and Cypher School 170–75

  gravity, theories of 18, 23

  group theory 250–51

  Grundgesetze der Arithmetik (Frege) 152, 154

  Guardian 272

  hammers, harmony of 15

  Hardy, G.H. 1, 2–4, 49–50, 165, 166, 179–80, 191

  Riemann hypothesis telegrams 73

  Hecke algebras 299–300

  Hein, Piet 277

  Heisenberg, Werner 162

  Hellman, Martin 104

  Hermite, Charles 3

  hieroglyphics 212

  Hilbert, David 101–3, 147, 151, 157

  and basic axioms 149–50

  and Fermat’s Last Theorem 226–7, 268

  23 problems 150, 160, 162, 163

  Hilbert’s Hotel 102–3

  Hippasus 54

  History of Mathematics (Montucla) 112

  Hodges, Andrew 176

  Hypatia 109, 111

  hyperbolic space 201

  Iamblichus 14–15

  Illusie, Luc 278, 281

  imaginary numbers 90, 93–6, 125–6

  induction, proof by 231–2, 322–3

  infinite descent, method of 90–91

  infinity 59, 101–3, 177–8

  International Congress of Mathematicians Berkeley (1986) 221, 222

  Paris (1900) 150

  intuition, and probability 44–5

  invariants 141, 142, 219

  Inventiones Mathematicae 277

  irrational numbers 50, 54, 90–92

  Iwasawa theory 259, 260, 296, 297–8

  Journal de Mathématique pures et appliquées 248

  Kanada, Yasumasa 51

  Katz, Nick 262, 263–5, 278–80, 281

  knot invariants 142, 219

  Kolyvagin–Flach method 259–61, 263–5, 279–80, 281, 293, 297–8

  Königliche Gesellschaft der Wissenschaften 135–7, 277

  Königsberg bridge puzzle 83–5

  Kovalevsky, Sonya 111

  Kronecker, Leopold 50

  Kummer, Ernst Eduard 123–8, 124, 134–5, 176–7

  L-series 188

  Lagrange, Joseph-Louis 96, 114, 239

  Lamé, Gabriel 116, 120–27, 121

  Landau, Edmund 110, 143–4

  Langlands, Robert 213, 306

  Langlands programme 213–14, 254

  Last Problem, The (Bell) 6, 30, 33, 73

  Le Blanc, Antoine-August 114

  see also Germain, Sophie Legendre, Adrien-Marie 116

  Leibniz, Gottfried 93

  liar’s paradox 161

  Libri-Carrucci dalla Sommaja, Count Guglielmo 113, 241

  light, nature of 204–5

  limping triangles 65

  Liouville, Joseph 124–5, 248, 249

  Lipman, Joseph 283

  Littlewood, John Edensor 179

  Lodge, David 177–8

  logic, mathematical 148–9

  logicians 148–9, 162

  loopiness, in rivers 17–18

  Loyd Sam 138–42

  Loyd’s puzzle see ‘14–15’ puzzle

  lyre, tuning strings on 14–17

  M-series 201–2, 204–5, 211, 251–3

  magnetism, and electricity 204–5

  Mahler 314

  Mathematical Magic Show (Gardner) 63

  mathematical proof 20–21, 23–6

  Mathematician’s Apology, A (Hardy) 2–3, 49–50, 166

  mathematicians

  collaboration amongst 4–5

  and compulsion of curiosity 164–6

  in India and Arabia 58–60, 93

  mathematical life 2–4

  require absolute proof 147–8

  secretive nature 40–41

 
self-doubt of 78–9

  youthfulness 3

  mathematics

  contradictory nature of 152, 154–7

  foundation for science 26–7

  objective subject 28

  relationship with science 17, 18

  in seventeenth century 39–40

  Mathematics of Great Amateurs (Coolidge) 39

  Mathematische Annalen 192

  Mazur, Barry 211–12, 221, 265, 267, 270, 271, 277

  Mersenne, Marin, Father 40–42

  Method, The (Heiberg) 48

  meticulous librarian, tale of 154–5

  Milo 9, 27–8

  Mirimanoff, Dimitri 177

  Miyaoka, Yoichi 254, 256–7

  Miyaoka inequality 256

  modular forms 195, 199–202

  and elliptic equations 202, 204–5, 209–15

  Monde, Le 272

  Montucla, Jean-Étienne 112

  moon, predicting phases of 81–2

  Moore, Professor L. T. 47

  Mozans, H.J. 119

  musical harmony, principles of 14–17

  My Philosophical Development (Russell) 154

  natural numbers 91

  negative numbers 90–94

  network formula 85–8

  New York, subway graffiti 257

  New York Times 254, 272–3, 282

  Newton, Isaac 18, 47, 80, 81

  Nixon, Richard Milhous 46–7

  Noether, Emmy 110–11

  nothingness, concept of 59

  number line 92, 94–5, 185–6

  numbers

  definition of 150, 152

  relationships between 11

  numerals, Indo-Arab 59–60

  Oberwolfach symposium (1984) 215–19, 221

  Olbers, Heinrich 115

  order and chaos 17

  overestimated prime conjecture 179

  Paganini, Nicolò 63

  parallelism, philosophy of 254, 257

  parasites, life-cycles 106–7

  particle physics 22–3

  Pascal, Blaise 40, 43–4, 45–6

  Penrose, Roger 198

  Penrose tilings 198–9

  People 274, 290–91

  perfect numbers 11–13

  philosopher, word coined by Pythagoras 10

  pi (π) 17–18, 50–53, 166

  Picturegoers, The (Lodge) 177–8

  Pillow Problems (Dodgson) 138

  Pinch, Richard 285

  Plato 109

  Poges, Arthur 37, 74

  Poincaré, Jules Henri 199

 

‹ Prev