Book Read Free

Essays. FSF Columns

Page 14

by Bruce Sterling


  Prime-number cryptography has another advantage. The difficulty of factorizing numbers becomes drastically worse as the prime numbers become larger. A 56-bit key is, perhaps, not entirely outside the realm of possibility for a nationally supported decryption agency with large banks of dedicated supercomputers and plenty of time on their hands. But a 2,048 bit key would require every computer on the planet to number-crunch for hundreds of centuries.

  Decrypting a public-keyed message is not so much a case of physical impossibility, as a matter of economics. Each key requires a huge computational effort to break it, and there are already thousands of such keys used by thousands of people. As a further blow against the decryptor, the users can generate new keys easily, and change them at will. This poses dire problems for the professional electronic spy.

  The best-known public-key encryption technique, the RSA algorithm, was named after its inventors, Ronald L. Rivest, Adi Shamir and Leon Adleman. The RSA technique was invented in the United States in the late 1980s (although, as if to spite the international trade in arms regulations, Shamir himself is an Israeli). The RSA algorithm is patented in the United States by the inventors, and the rights to implement it on American computers are theoretically patented by an American company known as Public Key Partners. (Due to a patent technicality, the RSA algorithm was not successfully patented overseas.)

  In 1991 an amateur encryption enthusiast named Phil Zimmerman wrote a software program called “Pretty Good Privacy” that used the RSA algorithm without permission. Zimmerman gave the program away on the Internet network via modem from his home in Colorado, because of his private conviction that the public had a legitimate need for powerful encryption programs at no cost (and, incidentally, no profit to the inventors of RSA). Since Zimmerman’s action, “Pretty Good Privacy” or “PGP” has come into common use for encrypting electronic mail and data, and has won an avid international following. The original PGP program has been extensively improved by other software writers overseas, out of the reach of American patents or the influence of the NSA, and the PGP program is now widely available in almost every country on the planet — or at least, in all those countries where floppy disks are common household objects.

  Zimmerman, however, failed to register as an arms dealer when he wrote the PGP software in his home and made it publicly available. At this writing, Zimmerman is under federal investigation by the Office of Defense Trade Controls at the State Department, and is facing a possible criminal indictment as an arms smuggler. This despite the fact that Zimmerman was not, in fact, selling anything, but rather giving software away for free. Nor did he voluntarily “export” anything — rather, people reached in from overseas via Internet links and retrieved Zimmerman’s program from the United States under their own power and through their own initiative.

  Even more oddly, Zimmerman’s program does not use the RSA algorithm exclusively, but also depends on the perfectly legal DES or Data Encryption Standard. The Data Encryption Standard, which uses a 56-bit classical key, is an official federal government cryptographic technique, created by IBM with the expert help of the NSA. It has long been surmised, though not proven, that the NSA can crack DES at will with their legendary banks of Cray supercomputers. Recently a Canadian mathematician, Michael Wiener of Bell-Northern Research, published plans for a DES decryption machine that can purportedly crack 56-bit DES in a matter of hours, through brute force methods. It seems that the US Government’s official 56-bit key — insisted upon, reportedly, by the NSA — is now too small for serious security uses.

  The NSA, and the American law enforcement community generally, are unhappy with the prospect of privately owned and powerfully secure encryption. They acknowledge the need for secure communications, but they insist on the need for police oversight, police wiretapping, and on the overwhelming importance of national security interests and governmental supremacy in the making and breaking of cyphers.

  This motive recently led the Clinton Administration to propose the “Clipper Chip” or “Skipjack,” a government-approved encryption device to be placed in telephones. Sets of keys for the Clipper Chip would be placed in escrow with two different government agencies, and when the FBI felt the need to listen in on an encrypted telephone conversation, the FBI would get a warrant from a judge and the keys would be handed over.

  Enthusiasts for private encryption have pointed out a number of difficulties with the Clipper Chip proposal. First of all, it is extremely unlikely that criminals, foreign spies, or terrorists would be foolish enough to use an encryption technique designed by the NSA and approved by the FBI. Second, the main marketing use for encryption is not domestic American encryption, but international encryption. Serious business users of serious encryption are far more alarmed by state-supported industrial espionage overseas, than they are about the safety of phone calls made inside the United States. They want encryption for communications made overseas to people overseas — but few foreign business people would buy an encryption technology knowing that the US Government held the exclusive keys.

  It is therefore likely that the Clipper Chip could never be successfully exported by American manufacturers of telephone and computer equipment, and therefore it could not be used internationally, which is the primary market for encryption. Machines with a Clipper Chip installed would become commercial white elephants, with no one willing to use them but American cops, American spies, and Americans with nothing to hide.

  A third objection is that the Skipjack algorithm has been classified “Secret” by the NSA and is not available for open public testing. Skeptics are very unwilling to settle for a bland assurance from the NSA that the chip and its software are unbreakable except with the official keys.

  The resultant controversy was described by Business Week as “Spy Vs Computer Nerd.” A subterranean power-struggle has broken out over the mastery of cryptographic science, and over basic ownership of the electronic bit-stream.

  Much is riding on the outcome.

  Will powerful, full-fledged, state-of-the-art encryption belong to individuals, including such unsavory individuals as drug traffickers, child pornographers, black-market criminal banks, tax evaders, software pirates, and the possible future successors of the Nazis?

  Or will the NSA and its allies in the cryptographic status-quo somehow succeed in stopping the march of scientific progress in cryptography, and in cramming the commercial crypto-genie back into the bottle? If so, what price will be paid by society, and what damage wreaked on our traditions of free scientific and technical inquiry?

  One thing seems certain: cryptography, this most obscure and smothered of mathematical sciences, is out in the open as never before in its long history. Impassioned, radicalized cryptographic enthusiasts, often known as “cypherpunks,” are suing the NSA and making it their business to spread knowledge of cryptographic techniques as widely as possible, “through whatever means necessary.” Small in number, they nevertheless have daring, ingenuity, and money, and they know very well how to create a public stink. In the meantime, their more conventional suit-and-tie allies in the Software Publishers Association grumble openly that the Clipper Chip is a poorly-conceived fiasco, that cryptographic software is peddled openly all over the planet, and that “the US Government is succeeding only in crippling an American industry’s exporting ability.”

  The NSA confronted the worst that America’s adversaries had to offer during the Cold War, and the NSA prevailed. Today, however, the secret masters of cryptography find themselves confronting what are perhaps the two most powerful forces in American society: the computer revolution, and the profit motive. Deeply hidden from the American public through forty years of Cold War terror, the NSA itself is for the first time, exposed to open question and harrowing reassessment.

  Will the NSA quietly give up the struggle, and expire as secretly and silently as it lived its forty-year Cold War existence? Or will this most phantomlike of federal agencies decide to fight for its survival and its
scientific pre-eminence?

  And if this odd and always-secret agency does choose to fight the new cryptography, then — how?

  “The Dead Collider”

  It certainly seemed like a grand idea at the time, the time being 1982, one of the break-the-bank years of the early Reagan Administration.

  The Europeans at CERN, possessors of the world’s largest particle accelerator, were planning to pave their massive Swiss tunnel with new, superconducting magnets. This would kick the European atom-smasher, already powerful, up to a massive 10 trillion electron volts.

  In raw power, this would boost the Europeans decisively past their American rivals. America’s most potent accelerator in 1982, Fermilab in Illinois, could manage a meager 2 TeV. And Fermilab’s Tevatron, though upgraded several times, was an aging installation.

  A more sophisticated machine, ISABELLE at Brookhaven National Laboratory in New York, had been planned in 1979 as Fermilab’s successor at the forefront of American particle physics. But by 1982, it was clear that ISABELLE’s ultrasophisticated superconducting magnets had severe design troubles. The state-of-the-art bungling at Brookhaven was becoming an open embarrassment to the American particle-physics community. And even if the young ISABELLE facility overcame those problems and got their magnets to run, ISABELLE was intended to sacrifice raw power for sophistication; at best, ISABELLE would yield a feeble .8 TeV.

  In August 1982, Leon Lederman, then director of Fermilab, made a bold and visionary proposal. In a conference talk to high-energy physicists gathered in Colorado, Lederman proposed cancelling both ISABELLE and the latest Fermilab upgrade, in pursuit of a gigantic American particle accelerator that would utterly dwarf the best the Europeans had to offer, now or in the foreseeable future. He called it “The Machine in the Desert.”

  The “Desertron” (as Lederman first called it) would be the largest single scientific instrument in the world, employing a staff of more than two thousand people, plus students, teachers and various properly awestruck visiting scholars from overseas. It would be 20 times more powerful than Fermilab, and full sixty times more powerful than CERN circa 1982. The accelerator’s 54 miles of deep tunnels, lined with hard-vacuum beamguides and helium-refrigerated giant magnets, would be fully the size of the Washington Beltway.

  The cost: perhaps 3 billion dollars. It was thought that the cash-flush Japanese, who had been very envious of CERN for some time, would be willing to help the Americans in exchange for favored status at the complex.

  The goal of the Desertron, or at least its target of choice, would be the Higgs scalar boson, a hypothetical subatomic entity theoretically responsible for the fact that other elementary particles have mass. The Higgs played a prominent part at the speculative edges of quantum theory’s so-called “Standard Model,” but its true nature and real properties were very much in doubt.

  The Higgs boson would be a glittering prize indeed, though not so glittering as the gigantic lab itself. After a year of intense debate within the American high-energy-physics community, Lederman’s argument won out.

  His reasoning was firmly in the tradition of 20th-century particle physics. There seemed little question that massive power and scale of the Desertron was the necessary next step for real progress in the field.

  At the beginning of the 20th century, Ernest Rutherford (who coined the memorable catch-phrase, “All science is either physics or stamp-collecting”) discovered the nucleus of the atom with a mere five million electron volts. Rutherford’s lab equipment not much more sophisticated than string and sealing-wax. To get directly at neutrons and protons, however, took much more energy — a billion electron volts and a cyclotron. To get quark effects, some decades later, required ten billion volts and a synchrotron. To make quarks really stand up and dance in their full quantum oddity, required a hundred billion electron volts and a machine that was miles across. And to get at the Higgs boson would need at least ten trillion eV, and given that the fantastically powerful collision would be a very messy affair, a full forty trillion — two particle beams of twenty TeV each, colliding head-on — was a much safer bet.

  Throughout the century, then, every major new advance in particle studies had required massive new infusions of power. A machine for the 1990s, the end result of decades of development, would require truly titanic amounts of juice. The physics community had hesitated at this step, and had settled for years at niggling around in the low trillions of electron volts. But the field of subatomic studies was looking increasingly mined-out, and the quantum Standard Model had not had a good paradigm-shattering kick in the pants in some time. From the perspective of the particle physicist, the Desertron, despite its necessarily colossal scale, made perfect scientific sense.

  The Department of Energy, the bureaucratic descendant of the Atomic Energy Commission and the traditional federal patron of high-energy physics, had more or less recovered from its last major money-wasting debacle, the Carter Administration’s synthetic fuels program. Under new leadership, the DoE was sympathetic to an ambitious project with some workable and sellable rationale.

  Lederman’s tentative scheme was developed, over three years, in great detail, by an expert central design group of federally-sponsored physicists and engineers from Lawrence Berkeley labs, Brookhaven and Fermilab. The “Desertron” was officially renamed the “Superconducting Super Collider.” In 1986 the program proposal was carried to Ronald Reagan, then in his second term. While Reagan’s cabinet seemed equally split on the merits of the SSC versus a much more modest research program, the Gipper decided the issue with one of his favorite football metaphors: “Throw deep.”

  Reagan’s SSC was a deep throw indeed. The collider ring of Fermilab in Illinois was visible from space, and the grounds of Fermilab were big enough to boast their own herd of captive buffalo. But the ring of the mighty Super Collider made Fermilab’s circumference look like a nickel on a dinner plate. One small section of the Super Collider, the High Energy Booster, was the size of Fermilab all by itself, but this Booster was only a humble injection device for the Super Collider.

  The real action was to be in the fifty-four-mile, 14-ft-diameter Super Collider ring.

  As if this titanic underground circus were not enough, the SSC also boasted two underground halls each over 300 feet long, to be stuffed with ultrasophisticated particle detectors so huge as to make their hard-helmeted minders resemble toy dolls. Along with the fifty-four miles of Collider were sixteen more miles of injection devices: the Linear Accelerator, the modest Low Energy Booster, the large Medium Energy Booster, the monster High Energy Booster, the Boosters acting like a set of gears to drive particles into ever-more frenzied states of relativistic overdrive, before their release into the ferocious grip of the main Super Collider ring.

  Along the curves and arcs of these wheels-within- wheels, and along the Super Collider ring itself, were more than forty vertical access shafts, some of them two hundred feet deep. Up on the surface, twelve separate refrigeration plants would pipe tons of ultra-frigid liquid helium to more than ten thousand superconducting magnets, buried deep within the earth. All by itself, the SSC would more than double the amount of helium refrigeration taking place in the entire planet.

  The site would have miles of new-paved roads, vast cooling ponds of fresh water, brand-new electrical utilities. Massive new office complexes were to be built for support and research, including two separate East and West campuses at opposite ends of the Collider, and two offsite research labs. With thousands of computers: personal computers, CAD workstations, network servers, routers, massively parallel supercomputing simulators. Office and laboratory networking including Internet and videoconferencing. Assembly buildings, tank farms, archives, libraries, security offices, cafeterias. The works.

  There were, of course, dissenters from the dream. Some physicists feared that the project, though workable and probably quite necessary for any real breakthrough in their field, was simply too much to ask. Enemies from outside the field likened
the scheme to Reagan’s Star Wars — an utter scientific farce — and to the Space Station, a political pork-barrel effort with scarcely a shred of real use in research — and to the hapless Space Shuttle, an overdesigned gobboon.

  Within the field of high-energy-physics, though, the logic was too compelling and the traditional arc of development too strong. A few physicists — Freeman Dyson among them — quietly suggested that it might be time for a radically new tack; time to abandon the tried-and-true collider technology entirely, to try daringly novel, small-scale particle-acceleration schemes such as free-electron lasers, gyroklystrons, or wake-field accelerators. But that was not Big Thinking; and particle physics was the very exemplar of Big Science.

  In the 1920 and 1930s, particle physicist Ernest Lawrence had practically invented “Big Science” with the Berkeley cyclotrons, each of them larger, more expensive, demanding greater resources and entire teams of scientists. Particle physics, in pursuit of ever-more- elusive particles, by its nature built huge, centralized facilities of ever greater complexity and ever greater expense for ever-larger staffs of researchers. There just wasn’t any other way to do particle physics, but the big way.

  And then there was the competitive angle, the race for international prestige: high-energy physics as the arcane, scholarly equivalent of the nuclear arms race. The nuclear arms race itself was, of course, a direct result of progress in 20th-century high-energy physics. For Cold Warriors, nuclear science, with its firm linkage to military power, was the Big Science par excellence.

 

‹ Prev