50 Weapons That Changed Warfare
Page 13
The second type was the towed torpedo. This was dragged through the water by a small fast boat that cut across the path of an enemy ship. The enemy ship hit the tow rope and dragged the torpedo against itself.
Some pirates in the South China Sea use a similar method. Two pirate boats connected by a cable straddle the path of a freighter during the night when most of the ship’s crew can be expected to be asleep. The ship hits the cable and drags the two pirate boats against itself. The pirates then climb aboard and take over the ship.
This scenario indicates one of the problems in the use of the towed torpedo: What happens to the boat that was towing the torpedo? If the enemy did not hit the rope at the right spot, the tow boat would be slammed against the side of the enemy ship before the torpedo. The problem with both types of torpedo was that ideally they should be used by crews with suicidal tendencies. When the C.S.S. Hunley, a Confederate submarine, sank the U.S.S. Housatonic in the Civil War (the first time a submarine ever sank another ship) with a spar torpedo, Hunley sank herself.
In 1866, in what is now Trieste, Italy, but was then part of Austria, an Austrian naval captain named Luppis considered these problems. How could he make a torpedo that did not require a crew of Kamakazes? He consulted a Scottish engineer named Robert Whitehead, who was living in that part of Austria. Together, they devised a miniature unmanned submarine that carried an explosive charge, or “warhead,” in its nose. Whitehead later made further improvements to the weapon and set up a company to manufacture “locomotive torpedoes,” as they were called. He finally sold the company to Vickers, the British armaments giant.
Whitehead and Vickers managed to sell quite a few torpedoes although the early Whitehead torpedoes were not all that impressive. They carried a mere 18 pounds of explosive, traveled at a speed of six knots and had a maximum range of 370 yards. Furthermore, they lacked reliable control of direction and depth-keeping. Progress was rapid, however. By 1876, Whitehead torpedoes had a range of 600 yards; by 1905, they had a range of 2,190 yards. The next year, 1906, the range had jumped to 6,560 yards. By 1913, the year before World War II, the torpedo could travel 18,590 yards. Speed and control improved at the same rate as range. By World War II, the Japanese “Long Lance” torpedo — by far the best torpedo in the war — had a range of 11 miles at a speed of 49 knots while carrying a 1,000 pound warhead.
Even the primitive torpedoes gave the world’s battleship admirals a fright.
Battleships in the late 19th and early 20th centuries were the most expensive of all war machines. Compared to them, the cost of a torpedo was negligible, but one torpedo could sink the most expensive battleship. The battleship was Goliath — huge, powerful, and fearsome — but the torpedo was David. The short range and inaccuracy of the early torpedoes was no consolation to the naval powers-that-be. Small fast steam launches, whose cost was also negligible compared to battleships, could race up to battleships and release their torpedoes at ranges so short they couldn’t miss. The guns of most battleships, particularly those of Britain, the world’s premiere naval power, probably wouldn’t be able to stop the little boats. France, Britain’s ancient rival, decided to concentrate on building torpedo boats and commerce raiders to neutralize British control of the seas.
An ambitious and imaginative British naval officer, Captain John Arbuthnot
“Jacky” Fisher, began a campaign that radically changed the armaments of the Royal Navy and, consequently, that of all the world’s navies.
British battleships in 1880 were comparatively heavily armored and slow.
Their ponderous wrought-iron guns were muzzle-loaders — a few accidents with early breech-loaders having convinced the Royal Navy that muzzle-loading was safer. Muzzle-loading the huge guns now needed on battleships required a complicated arrangement of cranes and was slower than breech-loading.
The first attempt to cope with the torpedo boat threat was to add very heavy machine guns to the ships’ armament. Gatling and Nordenfelt mechanical machine guns in calibers of an inch or more appeared on ships. The Hotchkiss revolver cannon — a multi-barrel gun that threw a 37 mm explosive shell — became popular with the world’s navies. Then Maxim introduced its one-pounder automatic cannon, the famous “pom-pom,” but, as the range and speed of torpedoes increased, these light cannons were no longer adequate. The British began purchasing steel breech-loaders capable of firing a 6-pound shell 12 times a minute with a three-man crew. Steel artillery and breech-loading had been pioneered by continental firms like Krupp in Germany and Hotchkiss in France.
Breech-loading mechanisms were far safer than the early ones, and steel was far stronger than wrought iron. The new guns let more powerful ammunition be fired more quickly. Torpedoes, though, were improving at least as fast as guns.
Something more was needed.
In 1886, Jacky Fisher, now director of naval ordnance, was authorized to get guns from private corporations instead of the royal arsenal. Armstrong, with Vickers, the second British armaments giant, had just what he was looking for — steel breech-loaders that took a 6-inch shell and had a new, French-developed recoil mechanism that absorbed the recoil and returned the gun to its point of aim. (See Chapter 28 on quick-firing artillery.) About the only limitation on its speed of fire was the strength of the gun crew. The breech-loading and recoil systems could be applied to big guns, too, making possible smaller turrets and quicker, more accurate fire. The modern battleship was born, and all navies that didn’t have such ships began to copy the British.
Fisher, an early torpedo enthusiast, still wasn’t satisfied that battleships were adequately protected from torpedo boats. As a rear admiral and third sea lord in the British admiralty, he got the navy to change to a new type of steam boiler that greatly improved the power of its engines. Then he introduced a new fast ship, smaller than a cruiser but bigger, faster, and more heavily armed than a torpedo boat. It was called a “torpedo boat destroyer,” and that was its mission. Today, its name shortened to destroyer and with different missions, it is still a staple of all navies. Fisher also pushed for more and better submarines, but, although he eventually became first sea lord (the top officer in the Royal Navy), he could not totally overcome the opposition of other naval brass who hated the thought of submarines, which they saw as the greatest threat to the surface fleet. The British did adopt the submarine, but built only a few.
In both world wars, the submarine, whose main weapon was the torpedo, proved to be the most efficient user of those miniature submarines sailors call “tin fish.” (See Chapter 29.) Airplanes were a close second.
Surprisingly, in World War II, the United States, the country with the largest, and in most ways, most modern, navy, had the worst torpedoes. Admiral Samuel Morison, the official navy historian of World War II, attributed the deficiency to a combination of poor design, obsolescence, false economy and inefficiency at the navy-owned torpedo factory in Newport, Rhode Island. Most of the torpedoes were left over from World War I. The detonators sometimes failed to work even if the target was hit squarely, and too often the target was not hit because the depth regulator was faulty. Submarine commanders returned from patrol reporting they had heard as many as nine torpedoes strike a Japanese ship without exploding.
The U.S. Navy was convinced that the next war’s naval battles would be fought at long range with big guns, so it took the torpedo tubes off its cruisers.
The torpedo, in spite of the phenomenal Japanese “Long Lance,” was essentially a short-range weapon. And to much of the naval brass, and an even higher proportion of Congress, battleships and aircraft carriers were glamor weapons — not destroyers and submarines.
By mid-1943, however, American torpedo troubles had been cured, and U.S. submarines proceeded to sink most of Japan’s cargo fleet and a high proportion of its navy with torpedoes. (See Chapter 29.) Torpedoes appeared in a wide variety of forms during the two world wars.
Most, as with the original Whitehead torpedo, were powered by a miniature steam engine
using compressed air or oxygen to allow combustion. The steam engine provide great speed and long range, but it left a visible wake, giving target ships a chance to evade the missile. The Germans introduced a torpedo with an electric engine that left no wake, but it was slow and short-ranged.
Later the Americans captured one and improved it, producing a faster, longer-ranged torpedo that still left no wake. The Japanese, not satisfied with their Long Lance, developed a special torpedo for use at Pearl Harbor, a location considered unsuitable for aerial torpedoes because of the constricted space and shallow water. The new torpedo traveled fairly close to the surface and armed itself almost immediately after it was dropped. Another German innovation was an acoustic torpedo that homed in on the noise of a ship’s engines and propellers. The Allies foiled this with the “Foxer,” a device towed by a ship that produced noises that made the acoustic torpedo hit the decoy. The United States also produced a homing torpedo and used it as an anti-submarine weapon. “Fido,” it was called, because it “smelled” its prey in deep water. When it saw a U.S. plane approaching, an enemy submarine invariably dived. When that happened, the plane dropped Fido, which pursued the now invisible sub and sank it.
A post-war torpedo guidance system uses active acoustic homing. The torpedo sends out sounds, like a sonar system does, to locate a submarine lying motionless on the sea bottom, then homes in on the target. Another type of torpedo is steered by signals reaching it over a long, thin wire. Wire guidance is not really new. The Brennan torpedo, a 19th-century rival of the Whitehead, used wire guidance. Wire technology at that time was primitive, however, and the wire was thick. The Brennan torpedo required a mass of wire so large it was inconvenient and even dangerous aboard a ship. The wire-guided torpedo had to wait another half-century.
With all its forms and ways of delivery — surface vessel, submarine, or aircraft — the torpedo has thoroughly changed naval warfare, and it may bring more changes in the future.
Chapter 27
10 Shots a Second: The Machine Gun
National Archives from Marine Corps
Marines with Browning machine gun (center), Thompson submachine gun (front), and M1 carbine (rear) repulse Japanese counterattack in 1944.
It was July 1, 1916. Nineteen British divisions, the majority of them part of Kitchner’s “New Army,” volunteers so far untested in battle, were poised to effect the breakthrough their commander, Sir Douglas Haig, expected to end the war. The Somme had been a quiet area for the last two years. For the last week, though, it had been anything but quiet. A thousand field pieces, 180 heavy guns, and 245 heavy howitzers had dropped 3,000,000 shells on the German trenches and artillery positions. The no-man’s-land and the German positions were a churned-up mass of shell holes. It looked as if nothing could have survived. To make sure that nothing did, the infantry would be preceded by a “creeping barrage”: the artillery would pound the first German trenches, then as the infantry drew close, it would shift to positions farther away. The attack was expected to consist of a stroll across a field, through the ripped up ruins of what had been a formidable German barbed wire entanglement and into the area that once held German trenches.
The Boer War had taught the British infantry “fire and movement.” Some of the men would rush forward for a short distance then take cover, while the rest, firing from prone or behind cover, would cover their advance with rifle fire. The advanced troops then would fire on the enemy while their comrades rushed forward. This greatly reduced casualties, but it was harder to control the troops. Because his soldiers were so green, and because much German resistance was unlikely, Haig decided to have the troops stay in line and walk to the enemy trenches. Also, if there were enemy fire, the high command was afraid some of the untried troops would flop into shell holes and refuse to advance.
Orders stated that “The assaulting troops must push forward at a steady pace in successive lines, each line adding fresh impetus to the preceding line.”
Nothing turned out as expected. The enormous artillery barrage did not cut the barbed wire. It just tossed the wire up and tangled it more. It was harder to get through than it was originally. Few of the Tommies even got to the wire.
The Germans had dugouts 30 feet below the surface in the chalky soil. They dragged their Maxim machine guns out and cut loose.
A German soldier recalled that attack:
When the English started advancing we were very worried; they looked as if they must overrun our trenches. We were very surprised to see them walking… When we started firing we just had to load and reload. They went down in the hundreds. You didn’t have to aim, we just fired into them.
Two British battalions were practically wiped out by a single machine gun.
Many of the troops never got farther from their own trenches than a few feet.
Long-range machine gun fire killed many others from reserve trenches before they even reached the British frontline trenches. On that first day of the Battle of the Somme, 20,000 of the 100,000 attackers were killed; 40,000 were wounded; and many of the wounded later died.
In spite of that, Haig kept the offensive going for more than four months. It was always the same: No matter how heavily the artillery pounded the enemy trenches, a few German machine guns survived and cut down thousands of attacking infantrymen. The British gained a little ground, but never achieved a breakthrough. For the first two weeks, they didn’t gain an inch. In the middle of September, the British introduced a new weapon: the tank. The tanks gained 3,500 yards, the biggest one-day advance, but by the end of the day, all 36 tanks had broken down. By November 19, when the offensive was called off, the deep-est British penetration was 7 miles from their starting point on July 1. They lost 419,654 men. For comparison, that’s more deaths than all United States forces suffered in all of World War II. The overwhelming majority of the dead fell to the machine gun.
The Battle of the Somme was not, of course, the first use of the machine gun in World War I. And World War I was by no means the first war to see machine guns. A practical machine gun, the Gatling gun, had been around since 1862. It had seen a little use in the American Civil War. Although the U.S. government refused to adopt it during the war because its inventor, Dr. Richard Gatling, had been born in South Carolina, General Benjamin Butler bought 12 of them with his own money and used them at the siege of Petersburg. In the Spanish-American War, Captain Charles H. Parker organized a Gatling battery and showed how massed machine gun fire could facilitate an attack. The British had used Gatlings and other mechanical machine guns in their colonial wars to mow down uncounted hordes of native warriors. Somehow, the British didn’t think machine guns would work in “civilized” warfare.
The Gatling was a mechanical machine gun. It was powered by human muscle — a gunner turning a crank. Hiram Maxim, a mechanical genius from Maine, had a better idea. He once fired a caliber .45–70 army rifle, was impressed by the kick, and thought that energy might be used to reload and fire the gun. What he eventually built was the first automatic machine gun. The recoil of the shot forced back the barrel and breech block. After moving about 3/4 of an inch, the breechblock was separated from the barrel. The barrel stopped moving while the breechblock continued to the rear and ejected the empty shell.
The breechblock’s movement also moved an arrangement of levers that pulled an ammunition belt into the gun a short distance and placed a cartridge from the belt in line with the barrel. A spring pushed the breechblock back towards the barrel breech and chambered it. The striker then struck the cartridge and fired it. It would continue firing until the gunner released the trigger. The Maxim gun could fire up to 600 rounds a minute — 10 shots a second. It had a water jacket around the barrel to keep the gun from overheating. In fact, if you kept the water jacket filled and had an unlimited supply of ammunition belts, you could practically fire the gun indefinitely. In practice, this type of machine gun usually fired about 250 rounds a minute. In combat, some guns have actually fired 15,000 shots an hour.r />
When the target was small or hidden in bushes, the machine gun functioned like a long-range shotgun, a somewhat dispersed burst of bullets acting like a charge of buckshot. At shorter ranges, it was easier for a partially trained soldier to use than a rifle. By using tracer bullets or noticing where his bullets kicked up dust, the gunner could see where he was hitting and instantly correct his aim. It was like the difference between throwing a rock at an object or hitting it with a garden hose. And against masses of foot soldiers, it was the most lethal gun ever invented.
Masses of foot soldiers were what the British encountered at Omdurman in Kitchner’s campaign against the Sudanese dervishes. The British had six Maxim guns. The followers of the Mahdi, a self-appointed Muslim messiah, had thousands upon thousands of spear- and sword-armed warriors. They jogged up to the square of British infantry in a huge mob. The Maxim guns opened fire.
Hardly any of the dervishes got within a quarter mile of the British lines.
“It was not a battle, but an execution,” an eye-witness wrote. “The bodies were not in heaps, bodies hardly ever are; but they spread evenly over acres and acres.”
Eleven thousand Sudanese were killed, almost all of them by the machine guns. British losses came to 48: 28 British and 20 Egyptians. Officially, Kitchner was leading an Egyptian army. Almost all of the British losses were the result of an extremely foolish cavalry charge in which the young Winston Churchill par-ticipated, before the big show.
The British Maxims spread bodies all over Africa. So did German Maxims.
As a matter of fact, the Maxim machine gun, used by the British (called the Vickers), the Germans (the Spandau), and the Russians in World War I, is supposed to have killed more human beings than any other gun in history. The French also had a pretty horrendous body count, but they used the Hotchkiss machine gun, one of the first automatic guns after the Maxim. In the Russo-Japanese war, the Russians used the Maxim and the Japanese the Hotchkiss.