Book Read Free

The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory

Page 18

by Brian Greene


  This takes us to the third consequence of the enormous value of the string tension. Strings can execute an infinite number of different vibrational patterns. For instance, in Figure 6.2 we showed the beginnings of a never-ending sequence of possibilities characterized by an ever greater number of peaks and troughs. Doesn't this mean that there would have to be a corresponding never-ending sequence of elementary particles, seemingly in conflict with the experimental situation summarized in Tables 1.1 and 1.2?

  The answer is yes: If string theory is right, each of the infinitely many resonant patterns of string vibration should correspond to an elementary particle. An essential point, however, is that the high string tension ensures that all but a few of these vibrational patterns will correspond to extremely heavy particles (the few being the lowest-energy vibrations that have near-perfect cancellations with quantum string jitters). And again, the term "heavy" here means many times heavier than the Planck mass. As our most powerful particle accelerators can reach energies only on the order of a thousand times the proton mass, less than a millionth of a billionth of the Planck energy, we are very far from being able to search in the laboratory for any of these new particles predicted by string theory.

  There are more indirect approaches by which we could search for them, though. For instance, the energies involved at the birth of the universe would have been high enough to produce these particles copiously. In general one would not expect them to survive to the present day, as such super-heavy particles are usually unstable, relinquishing their enormous mass by decaying into a cascade of ever lighter particles, ending with the familiar, relatively light particles in the world around us. However, it is possible that such a super-heavy vibrational string state—a relic from the big bang—did survive to the present. Finding such particles, as we discuss more fully in Chapter 9, would be a monumental discovery, to say the least.

  Gravity and Quantum Mechanics in String Theory

  The unified framework that string theory presents is compelling. But its real attraction is the ability to ameliorate the hostilities between the gravitational force and quantum mechanics. Recall that the problem in merging general relativity and quantum mechanics turns up when the central tenet of the former—that space and time constitute a smoothly curving geometrical structure—confronts the essential feature of the latter—that everything in the universe, including the fabric of space and time, undergoes quantum fluctuations that become increasingly turbulent when probed on smaller and smaller distance scales. On sub-Planck-scale distances, the quantum undulations are so violent that they destroy the notion of a smoothly curving geometrical space; this means that general relativity breaks down.

  String theory softens the violent quantum undulations by "smearing" out the short-distance properties of space. There is a rough and a more precise answer to the question of what this really means and how it resolves the conflict. We discuss each in turn.

  The Rough Answer

  Although it sounds unsophisticated, one way that we learn about the structure of an object is by hurling other things at it and observing the precise way in which they are deflected. We are able to see things, for example, because our eyes collect and our brains decode information carried by photons as they bounce off of objects being viewed. Particle accelerators are based on the same principle: They hurl bits of matter such as electrons and protons at each other as well as at other targets, and elaborate detectors analyze the resulting spray of debris to determine the architecture of the objects involved.

  As a general rule, the size of the probe particle that we use sets a lower limit to the length scale to which we are sensitive. To get a feel for what this important statement means, imagine that Slim and Jim decide to get some culture by enrolling in a drawing class. As the semester progresses, Jim becomes increasingly irritated by Slim's growing proficiency as an artist and challenges him to an unusual contest. He proposes that they each take a peach pit, secure it in a vise, and draw their most accurate "still life" renditions. The unusual feature of Jim's challenge is that neither he nor Slim will be allowed to look at the peach pits. Instead, each is allowed to learn about the size, shape, and features of his peach pit only by shooting things (other than photons!) at the pit and observing how they are deflected, as illustrated in Figure 6.4. Unbeknownst to Slim, Jim fills Slim's "shooter" with marbles (as in Figure 6.4(a)) but fills his own shooter with far smaller five-millimeter plastic pellets (as in Figure 6.4(b)). They both turn on their shooters, and the competition begins.

  After a while, the best drawing Slim can come up with is that in Figure 6.4(a). By observing the trajectories of the deflected marbles he was able to learn that the pit is a small, hard-surfaced mass. But that's all he could learn. Marbles are just too large to be sensitive to the finer corrugated structure of the peach pit. When Slim takes a look at Jim's drawing (Figure 6.4(b)), he is surprised to see that he has been outdone. A momentary glance at Jim's shooter, though, reveals the trick: The smaller probe particles used by Jim are fine enough to have their angle of deflection affected by some of the largest features adorning the pit's surface. And so, by shooting many five-millimeter pellets at the pit and observing their deflected trajectories, Jim was able to draw a more detailed image. Slim, not to be outdone, goes back to his shooter, fills it with even smaller probe particles—half-millimeter pellets—that are tiny enough to enter and hence be deflected by the finest corrugations on the pit's surface. By observing how these impinging probe particles are deflected, he is able to draw the winning rendition shown in Figure 6.4(c).

  The lesson taught by this little competition is clear: Useful probe particles cannot be substantially larger than the physical features being examined; otherwise, they will be insensitive to the structures of interest.

  The same reasoning holds, of course, if one wants to probe the pit even more deeply to determine its atomic and subatomic structure. Half-millimeter pellets will not provide any useful information; they are clearly too big to have any sensitivity to structure on atomic scales. This is why particle accelerators use protons or electrons as probes, since their small size makes them much better suited to the task. On subatomic scales, where quantum concepts replace classical reasoning, the most appropriate measure of a particle's probing sensitivity is its quantum wavelength, which indicates the window of uncertainty in its position. This fact reflects our discussion of Heisenberg's uncertainty principle in Chapter 4, in which we found that the margin of error incurred when using a point particle as a probe (we focused on photon probes but the discussion applies to all other particles) is about equal to the probe particle's quantum wavelength. In somewhat looser language, the probing sensitivity of a point particle is smeared out by the jitteriness of quantum mechanics, in much the same way that the precision of a surgeon's scalpel is compromised if he or she has hands that shake. But recall that in Chapter 4 we also noted the important fact that a particle's quantum wavelength is inversely proportional to its momentum, which, roughly speaking, is its energy. And so, by increasing a point particle's energy, its quantum wavelength can be made shorter and shorter—quantum smearing can be decreased further and further—and hence we can use it to probe ever finer physical structures. Intuitively, higher-energy particles have greater penetrating power and are therefore able to probe more minute features.

  In this regard, the distinction between point particles and strands of string becomes manifest. Just as was the case for plastic pellets probing the surface features of a peach pit, the string's inherent spatial extent prevents it from probing the structure of anything substantially smaller than its own size—in this case structures arising on length scales shorter than the Planck length. Somewhat more precisely, in 1988 David Gross, then of Princeton University, and his student Paul Mende showed that when quantum mechanics is taken into account, continually increasing the energy of a string does not continually increase its ability to probe finer structures, in direct contrast with what happens for a point particle. They found
that when the energy of a string is increased, it is at first able to probe shorter-scale structures, just like an energetic point particle. But when its energy is increased beyond the value required for probing structures on the scale of the Planck length, the additional energy does not sharpen the string probe. Rather, the energy causes the string to grow in size, thereby diminishing its short-distance sensitivity. In fact, although the size of a typical string is the Planck length, if we pumped enough energy into a string—an amount of energy beyond our wildest imaginings but one that would likely have been attained by the big bang—we could cause it to grow to a macroscopic size, a clumsy probe of the microcosmos indeed! It's as if a string, unlike a point particle, has two sources of smearing: quantum jitters, as for a point particle, and also its own inherent spatial extent. Increasing a string's energy decreases the smearing from the first source but ultimately increases the smearing from the second. The upshot is that no matter how hard you try, the extended nature of a string prevents you from using it to probe phenomena on sub-Planck-length distances.

  But the whole conflict between general relativity and quantum mechanics arises from the sub-Planck-length properties of the spatial fabric. If the elementary constituent of the universe cannot probe sub-Planck-scale distances, then neither it nor anything made from it can be affected by the supposedly disastrous short-distance quantum undulations. This is similar to what happens as we draw our hand across a highly polished granite surface. Although at a microscopic level the granite is discrete, grainy, and bumpy, our fingers are unable to detect these short-scale variations and the surface feels perfectly smooth. Our stumpy, extended fingers "smear" out the microscopic discreteness. Similarly, since the string has spatial extent, it also has limits on its short-distance sensitivity. It cannot detect variations on sub-Planck-distance scales. Like our fingers on granite, the string smears out the jittery ultramicroscopic fluctuations of the gravitational field. Although the resulting fluctuations are still substantial, this smearing smooths them out just enough to cure the incompatibility between general relativity and quantum mechanics. And, in particular, the pernicious infinities (discussed in the preceding chapter) that arise in the point-particle approach to forming a quantum theory of gravity are done away with by string theory.

  An essential difference between the granite analogy and our real concern with the spatial fabric is that there are ways in which the microscopic discreteness of the granite's surface can be exposed: Finer, more precise probes than our fingers can be used. An electron microscope has the ability to resolve surface features to less than a millionth of a centimeter; this is sufficiently small to reveal the numerous surface imperfections. By contrast, in string theory there is no way to expose the sub-Planck-scale "imperfections" in the fabric of space. In a universe governed by the laws of string theory, the conventional notion that we can always dissect nature on ever smaller distances, without limit, is not true. There is a limit, and it comes into play before we encounter the devastating quantum foam of Figure 5.1. Therefore, in a sense that will be made more precise in later chapters, one can even say that the supposed tempestuous sub-Planckian quantum undulations do not exist. A positivist would say that something exists only if it can—at least in principle—be probed and measured. Since the string is supposed to be the most elementary object in the universe and since it is too large to be affected by the violent sub-Planck-length undulations of the spatial fabric, these fluctuations cannot be measured and hence, according to string theory, do not actually arise.

  A Sleight of Hand?

  This discussion may leave you feeling dissatisfied. Instead of showing that string theory tames the sub-Planck-length quantum undulations of space, we seem to have used the string's nonzero size to skirt the whole issue completely. Have we actually solved anything? We have. The following two points will serve to emphasize this.

  First, what the preceding argument implies is that the supposedly problematic sub-Planck-length spatial fluctuations are an artifact of formulating general relativity and quantum mechanics in a point-particle framework. In a sense, therefore, the central conflict of contemporary theoretical physics has been a problem of our own making. Because we previously envisioned all matter particles and all force particles to be pointlike objects with literally no spatial extent, we were obligated to consider properties of the universe on arbitrarily short distance scales. And on the tiniest of distances we ran into seemingly insurmountable problems. String theory tells us that we encountered these problems only because we did not understand the true rules of the game; the new rules tell us that there is a limit to how finely we can probe the universe—and, in a real sense, a limit to how finely our conventional notion of distance can even be applied to the ultramicroscopic structure of the cosmos. The supposed pernicious spatial fluctuations are now seen to have arisen in our theories because we were unaware of these limits and were thus led by a point-particle approach to grossly overstep the bounds of physical reality.

  Given the apparent simplicity of this solution for overcoming the problem between general relativity and quantum mechanics, you might wonder why it took so long for someone to suggest that the point-particle description is merely an idealization and that in the real world elementary particles do have some spatial extent. This takes us to our second point. Long ago, some of the greatest minds in theoretical physics, such as Pauli, Heisenberg, Dirac, and Feynman, did suggest that nature's constituents might not actually be points but rather small undulating "blobs" or "nuggets." They and others found, however, that it is very hard to construct a theory, whose fundamental constituent is not a point particle, that is nonetheless consistent with the most basic of physical principles such as conservation of quantum-mechanical probability (so that physical objects do not suddenly vanish from the universe, without a trace) and the impossibility of faster-than-light-speed transmission of information. From a variety of perspectives, their research showed time and again that one or both of these principles were violated when the point-particle paradigm was discarded. For a long time, therefore, it seemed impossible to find a sensible quantum theory based on anything but point particles. The truly impressive feature of string theory is that more than twenty years of exacting research has shown that although certain features are unfamiliar, string theory does respect all of the requisite properties inherent in any sensible physical theory. And furthermore, through its graviton pattern of vibration, string theory is a quantum theory containing gravity.

  The More Precise Answer

  The rough answer captures the essence of why string theory prevails where previous point-particle theories failed. And so, if you like, you can go on to the next section without losing the logical flow of our discussion. But having developed the essential ideas of special relativity in Chapter 2, we already have the necessary tools for describing more accurately how string theory calms the violent quantum jitters.

  In the more precise answer, we rely upon the same core idea as in the rough answer, but we express it directly at the level of strings. We do this by comparing, in some detail, point-particle and string probes. We will see how the extended nature of the string smears out the information that would be obtainable by point-particle probes, and therefore, again, how it happily does away with the ultra-short-distance behavior responsible for the central dilemma of contemporary physics.

  We first consider the way in which point particles would interact, if they were actually to exist, and hence how they could be used as physical probes. The most basic interaction is between two point particles moving on a collision course so that their trajectories will intersect, as in Figure 6.5. If these particles were billiard balls they would collide, and each would be deflected onto a new trajectory. Point-particle quantum field theory shows that essentially the same thing happens when elementary particles collide—they scatter off one another and continue on deflected trajectories—but the details are a little different.

  For concreteness and simplicity, imagine that one
of the two particles is an electron and the other is its antiparticle, the positron. When matter and antimatter collide, they can. annihilate in a flash of pure energy, producing, for example, a photon.9 To distinguish the ensuing trajectory of the photon from the previous trajectories of the electron and positron, we follow a traditional physics convention and draw it with a wiggly line. The photon will typically travel for a bit and then release the energy derived from the initial electron-positron pair by producing another electron-positron pair with trajectories as indicated on the far right of Figure 6.6. In the end, two particles are fired at each other, they interact through the electromagnetic force, and finally they emerge on deflected trajectories, a sequence of events that bears some similarity to our description of colliding billiard balls.

  We are concerned with the details of the interaction—specifically, the point where the initial electron and positron annihilate and produce the photon. The central fact, as will become apparent, is that there is an unambiguous, completely identifiable time and place where this happens: It is marked in Figure 6.6.

  How does this description change if, when we closely examine the objects we thought were zero-dimensional points, they turn out to be one-dimensional strings? The basic process of interaction is the same, but now the objects on a collision course are oscillating loops, as shown in Figure 6.7. If these loops are vibrating in just the right resonance patterns, they will correspond to an electron and a positron on collision course, just as in Figure 6.6. Only when examined at the most minute distance scales, far smaller than anything our present technology can access, is their true stringlike character apparent. As in the point-particle case, the two strings collide and again annihilate each other in a flash. The flash, a photon, is itself a string in a particular vibrational pattern. Thus, the two incoming strings interact by merging together and producing a third string, as shown in Figure 6.7. Just as in our point-particle description, this string travels a bit, and then releases the energy derived from the two initial strings by dissociating into two strings that travel onward. Again, from any but the most microscopic perspective, this will look just like the point-particle interaction of Figure 6.6.

 

‹ Prev