Book Read Free

The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory

Page 27

by Brian Greene


  The Spectrum of String States*

  *Some of the ideas in this and the next few sections are rather subtle, so don't be put off if you have trouble following every link in the explanatory chain—especially in a single reading.

  The new possibility of wound-string configurations implies that the energy of a string in the Garden-hose universe comes from two sources: vibrational motion and winding energy. From the legacy of Kaluza and Klein, each depends on the geometry of the hose, that is, on the radius of its curled-up circular component, but with a distinctly stringy twist, since point particles cannot wrap around dimensions. Our first task, then, will be to determine precisely how the winding and vibrational contributions to the energy of a string depend on the size of the circular dimension. For this purpose, it proves convenient to separate the vibrational motion of strings into two categories: uniform and ordinary vibrations. Ordinary vibrations refer to the usual oscillations we have discussed repeatedly, such as those illustrated in Figure 6.2; uniform vibrations refer to even simpler motion: the overall motion of string as it slides from one position to another without changing its shape. All string motion is a combination of sliding and oscillating—of uniform and ordinary vibrations—but for the present discussion it is easier to separate them in this manner. In fact, the ordinary vibrations will not play a central part in our reasoning, and we will therefore include their effects only after we have finished giving the gist of the argument.

  Here are the two essential observations. First, uniform vibrational excitations of a string have energies that are inversely proportional to the radius of the circular dimension. This is a direct consequence of the quantum-mechanical uncertainty principle: A smaller radius more strictly confines a string and therefore, through quantum-mechanical claustrophobia, increases the amount of energy in its motion. So, as the radius of the circular dimension decreases, the energy of motion of the string necessarily increases—the hallmark feature of an inverse proportionality. Second, as found in the preceding section, the winding mode energies are directly—not inversely—proportional to the radius. Remember, this is because the minimum length of wound strings, and hence their minimum energy, is proportional to the radius. These two observations establish that large values of the radius imply large winding energies and small vibration energies, whereas small values of the radius imply small winding energies and large vibration energies.

  This leads us to the key fact: For any large circular radius of the Garden-hose universe, there is a corresponding small circular radius for which the winding energies of strings in the former universe equal the vibration energies of strings in the latter, and vibration energies of strings in the former equal winding energies of strings in the latter. As physical properties are sensitive to the total energy of a string configuration—and not to how the energy is divided between vibration and winding contributions—there is no physical distinction between these geometrically distinct forms for the Garden-hose universe. And so, strangely enough, string theory claims that there is no difference whatsoever between a "fat" Garden-hose universe and a "thin" one.

  It's a cosmic hedging of bets, somewhat akin to what you, as a smart investor, should do if faced with the following puzzle. Imagine you learn that the fate of two stocks trading on Wall Street—say, a company making fitness machines and a company making heart-bypass valves—are inextricably connected. They each closed trading today valued at one dollar per share, and you are told by a reliable source that if one company's stock goes up the other's will go down, and vice versa. Moreover, your source—who is completely trustworthy (but whose guidance might be crossing over legal boundaries)—tells you that the next day's closing prices of these two companies are absolutely certain to be inversely related to one another. That is, if one stock closes at $2 per share, the other will close at $½ (50 cents) per share; if one stock closes at $10 per share, the other will close at $1/10 (10 cents) per share, and so on. But the one thing your source can't tell you is which stock will close high and which will close low. What do you do?

  Well, you immediately invest all of your money in the stock market, equally divided between the shares of these two companies. As you can easily check by working out a few examples, no matter what happens on the next day, your investment cannot lose value. At worse it can remain the same (if both companies again close at $1), but any movement of share prices—consistent with your insider information—will increase your holdings. For instance, if the fitness company closes at $4 and the heart-valve company closes at $¼ (25 cents), their combined value is $4.25 (for each pair of shares), compared with $2 the previous day Furthermore, from the perspective of net worth, it does not matter one bit whether the fitness company closes high and the heart-valve company low, or vice versa. If you care only about the total amount of money, these two distinct circumstances are financially indistinguishable.

  The situation in string theory is analogous in that the energy in string configurations comes from two sources—vibrations and windings—whose contributions to the total energy of a string are generally different. But, as we shall see in more detail below, certain pairs of distinct geometrical circumstances—leading to high-winding-energy/low-vibration-energy or low-winding-energy/high-vibration-energy—are physically indistinguishable. And, unlike the financial analogy for which considerations beyond total wealth can distinguish between the two types of stock holdings, there is absolutely no physical distinction between the two string scenarios.

  Actually, we shall see that to make the analogy with string theory tighter, we should consider what would happen if you did not divide your money equally between the two companies in your initial investment, but bought, say, 1,000 shares of the fitness company and 3,000 shares of the heart-valve company. Now the total value of your holdings does depend on which company closes high and which closes low. For instance, if the stocks close at $10 (fitness) and 10 cents (heart-valve), your initial investment of $4,000 will now be worth $10,300. If the reverse happens—the stocks close at 10 cents (fitness) and $10 (heart-valve)—your holdings will be worth $30,100 —significantly more.

  Nevertheless, the inverse relationship between the closing stock prices does ensure the following. If a friend of yours invests exactly "opposite" to you—3,000 shares of the fitness company and 1,000 shares of the heart-valve company—then the value of her holdings will be $10,300 if stocks close valves-high/fitness-low (the same as your holdings in the fitness-high/valves-low closing) and $30,100 if they close with fitness-high/valves-low (again, the same as your holdings in the reciprocal situation). That is, from the point of view of total stock value, interchanging which stock closes high and which closes low is exactly compensated by interchanging the number of shares you own of each company.

  Hold this last observation in mind as we now return to string theory and think about the possible string energies in a specific example. Imagine that the radius of the circular Garden-hose dimension is, say, ten times the Planck length. We will write this as R = 10. A string can wrap around this circular dimension one time, two times, three times, and so forth. The number of times a string wraps around the circular dimension is called its winding number. The energy from winding, being determined by the length of wound string, is proportional to the product of the radius and the winding number. Additionally, for any amount of winding, the string can undergo vibrational motion. As the uniform vibrations we are currently focusing on have energies that are inversely dependent on the radius, they are proportional to whole-number multiples of the reciprocal of the radius—1/R—which in this case is one-tenth of the Planck length. We call this whole number multiple the vibration number.2

  As you can see, this situation is very similar to what we encountered on Wall Street, with the winding and vibration numbers being direct analogs of the shares held in the two companies, while R and 1/R are the analogs of the closing prices per share in each. Now, just as you can easily calculate the total value of your investment from the number of shares he
ld in each company and the closing prices, we can calculate the total energy carried by a string in terms of its vibration number, its winding number, and the radius. In Table 10.1 we give a partial list of these total energies for various string configurations, which we specify by their winding and vibration numbers, in a Garden-hose universe with radius R = 10.

  A complete table would be infinitely long, since the winding and vibration numbers can take on arbitrary whole-number values, but this representative piece of the table is adequate for our discussion. We see from the table and our remarks that we are in a high-winding-energy/low-vibration-energy situation: Winding energies come in multiples of 10, while vibrational energies come in multiples of the smaller number 1/10.

  Now imagine that the radius of the circular dimension shrinks, say, from 10 to 9.2 to 7.1 and on down to 3.4, 2.2, 1.1, .7, all the way to .1 (1/10), where, for our present discussion, it stops. In this geometrically distinct form of the Garden-hose universe we can compile an analogous table of string energies: Winding energies are now multiples of 1/10 while vibration energies are multiples of its reciprocal, 10. The results are shown in Table 10.2.

  At first glance, the two tables might appear to be different. But closer inspection reveals that although arranged in a different order, the "total energy" columns of both tables have identical entries. To find the corresponding entry in Table 10.2 for a chosen entry in Table 10.1, one must simply interchange the vibration and winding numbers. That is, vibration and winding contributions play complementary roles when the radius of the circular dimension changes from 10 to 1/10. And so, as far as total string energies go, there is no distinction between these different sizes for the circular dimension. just as the interchange of fitness-high/valves-low with valves-high/fitness-low is exactly compensated by an interchange of the number of shares held in each company, interchange of radius 10 and radius 1/10 is exactly compensated by the interchange of vibration and winding numbers. Moreover, while for simplicity we have focused on an initial radius of R = 10 and its reciprocal 1/10, the conclusions drawn are the same for any choice of the radius and its reciprocal.3

  Tables 10.1 and 10.2 are incomplete for two reasons. First, as mentioned, we have listed only a few of the infinite possibilities for winding/vibration numbers that a string can assume. This, of course, poses no problem—we could make the tables as long as our patience allows and would find that the relation between them will continue to hold. Second, beyond winding energy, we have so far considered only energy contributions arising from the uniform-vibrational motion of a string. We should now include the ordinary vibrations as well, since these give additional contributions to the string's total energy and also determine the force charges it carries. The important point, however, is that investigations have revealed that these contributions do not depend on the size of the radius. Thus, even if we were to include these more detailed features of string attributes in Tables 10.1 and 10.2, the tables would still correspond exactly, since the ordinary vibrational contributions affect each table identically. We therefore conclude that the masses and the charges of particles in a Garden-hose universe with radius R are completely identical to those in a Garden-hose universe with radius 1/R. And since these masses and force charges govern fundamental physics, there is no way to distinguish physically these two geometrically distinct universes. Any experiment done in one such universe has a corresponding experiment that can be done in the other, leading to exactly the same results.

  A Debate

  George and Gracie, after being flattened out into two-dimensional beings, take up residence as physics professors in the Garden-hose universe. After setting up their competing laboratories, each claims to have determined the size of the circular dimension. Surprisingly, although each has a reputation for carrying out research with great precision, their conclusions do not agree. George claims that the circular radius is R = 10 times the Planck length, while Gracie claims that the circular radius is R = 1/10 times the Planck length.

  "Gracie," says George, "based on my string theory calculations, I know that if the circular dimension has radius 10, then I should expect to see strings whose energies are listed in Table 10.1. I have done extensive experiments using the new Planck energy accelerator and they have revealed that this prediction is precisely confirmed. Therefore, with confidence, I claim that the circular dimension has radius R = 10." Gracie, in defense of her claims, makes exactly the same remarks except for her conclusion that the list of energies in Table 10.2 is found, confirming that the radius is R = 1/10.

  In a flash of insight, Gracie shows George that the two tables, although arranged differently, are actually identical. Now George, who, as is well known, reasons a bit more slowly than Gracie, replies, "How can this be? I know that different values for the radius give rise, through basic quantum mechanics and the properties of wound strings, to different possible values for string energies and string charges. If we agree on the latter, then we must agree on the radius."

  Gracie, using her newfound insight into string physics replies, "What you say is almost, but not quite, correct. It is usually true that two different values for the radius give rise to different allowed energies. However, in the special circumstance when the two values for the radius are inversely related to one another—like 10 and 1/10—then the allowed energies and charges are actually identical. You see, what you would call a winding mode 1 would call a vibration mode, and what you would call a vibration mode 1 would call a winding mode. But nature does not care about the language we use. Instead, physics is governed by the properties of the fundamental ingredients—the particle masses (energies) and the force charges they carry. And whether the radius is R or 1/R, the complete list of these properties for the fundamental ingredients in string theory is identical."

  In a moment of bold comprehension, George responds, "I think I understand. Although the detailed description you and I might give for strings may differ—whether they are wound around the circular dimension, or the particulars of their vibrational behavior—the complete list of physical characteristics they can attain is the same. Therefore, since the physical properties of the universe depend upon these properties of the basic constituents, there is no distinction, no way to differentiate, between radii that are inversely related to one another." Exactly.

  Three Questions

  At this point you might say, "Look, if I was a little being in the Garden-hose universe I would simply measure the circumference of the hose with a tape measure and thereby unambiguously determine the radius no ifs, ands, or buts. So what is this nonsense about two indistinguishable possibilities with different radii? Furthermore, doesn't string theory do away with sub-Planck distances, so why are we even talking about circular dimensions with radii that are a fraction of the Planck length? And finally, while we are at it, who really cares about the two-dimensional Garden-hose universe—what does all this add up to when we include all dimensions?"

  Let's begin with the last question, as the answer will force us to come face to face with the first two.

  Although our discussion has taken place in the Garden-hose universe, we restricted ourselves to one extended and one curled-up spatial dimension merely for simplicity. If we have three extended spatial dimensions and six circular dimensions—the latter being the simplest of all Calabi-Yau spaces—the conclusion is exactly the same. Each of the circles has a radius that, if interchanged with its reciprocal, yields a physically identical universe.

  We can even take this conclusion one giant step further. In our universe, we observe three spatial dimensions, each of which, according to astronomical observations, appears to extend for about 15 billion light-years (a light-year is about 6 trillion miles, so this distance is about 90 billion trillion miles). As mentioned in Chapter 8, nothing tells us what happens after that. We do not know whether they continue on indefinitely or perhaps curve back on themselves in the shape of an enormous circle, beyond the visual sensitivity of state-of-the-art telescopes. If the latter is
the case, an astronaut travelling out into space, continuously going in a fixed direction, would ultimately circle around the universe—like Magellan travelling around the earth—and wind up back at the initial starting point.

  The familiar extended dimensions, therefore, may very well also be in the shape of circles and hence subject to the R and 1/R physical identification of string theory. To put some rough numbers in, if the familiar dimensions are circular then their radii must be about as large as the 15 billion light-years mentioned above, which is about ten trillion trillion trillion trillion trillion (R = 1061) times the Planck length, and growing as the universe expands. If string theory is right, this is physically identical to the familiar dimensions being circular with incredibly tiny radii of about 1/R=1/1061 = 10-61 times the Planck length! These are our well-known familiar dimensions in an alternate description provided by string theory. In fact, in this reciprocal language, these tiny circles are getting ever smaller as time goes by, since as R grows, 1/R shrinks. Now we seem to have really gone off the deep end. How can this possibly be true? How can a six-foot tall human being "fit" inside such an unbelievably microscopic universe? How can such a speck of a universe be physically identical to the great expanse we view in the heavens? Furthermore, we are now led forcefully to the second of our initial three questions: String theory was supposed to eliminate the ability to probe sub-Planck distances. But if a circular dimension has radius R whose length is larger than the Planck length, its reciprocal 1/R is necessarily a fraction of the Planck length. So what is going on? The answer, which will also address the first of our three questions, highlights an important and subtle aspect of space and distance.

 

‹ Prev