The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory
Page 30
A Tantalizing Possibility
In 1987, Shing-Tung Yau and his student Gang Tian, now at the Massachusetts Institute of Technology, made an interesting mathematical observation. They found, using a well-known mathematical procedure, that certain Calabi-Yau shapes could be transformed into others by puncturing their surface and then sewing up the resulting hole according to a precise mathematical pattern.2 Roughly speaking, they identified a particular kind of two-dimensional sphere—like the surface of a beach ball—sitting inside an initial Calabi-Yau space, as in Figure 11.2. (A beach ball, like all familiar objects, is three-dimensional. Here, however, we are referring solely to its surface; we are ignoring the thickness of the material from which it is made as well as the interior space it encloses. Points on the beach ball's surface can be located by giving two numbers—"latitude" and "longitude"—much as we locate points on the earth's surface. This is why the surface of the beach ball, like the surface of the garden hose discussed in preceding chapters, is two-dimensional.) They then considered shrinking the sphere until it is pinched down to a single point, as we illustrate with the sequence of shapes in Figure 11.3. This figure, and subsequent ones in this chapter, have been simplified by focusing in on the most relevant "piece" of the Calabi-Yau shape, but in the back of your mind you should note that these shape transformations are occuring within a somewhat larger Calabi-Yau space, as in Figure 11.2. And finally, Tian and Yau imagined slightly tearing the Calabi-Yau space at the pinch (Figure 11.4(a)), opening it up and gluing in another beach ball-like shape (Figure 11.4(b)), which they could then reinflate to a nice plump form (Figures 11.4(c) and 11.4(d)).
Mathematicians call this sequence of manipulations a flop-transition. It's as if the original beach ball shape is "flopped" over into a new orientation within the overall Calabi-Yau shape. Yau, Tian, and others noted that under certain circumstances, the new Calabi-Yau shape produced by a flop, as in Figure 11.4(d), is topologically distinct from the initial Calabi-Yau shape in Figure 11.3(a). This is a fancy way of saying that there is absolutely no way to deform the initial Calabi-Yau space in Figure 11.3(a) into the final Calabi-Yau space shown in Figure 11.4(d) without tearing the fabric of the Calabi-Yau space at some intermediate stage.
From a mathematical standpoint, this procedure of Yau and Tian is of interest because it provides a way to produce new Calabi-Yau spaces from ones that are known. But its real potential lies in the realm of physics, where it raises a tantalizing question: Could it be that, beyond its being an abstract mathematical procedure, the sequence displayed from Figure 11.3(a) through Figure 11.4(d) might actually occur in nature? Might it be that, contrary to Einstein's expectations, the fabric of space can tear apart and subsequently be repaired in the manner described?
The Mirror Perspective
For a couple of years after their 1987 observation, Yau would, every so often, encourage me to think about the possible physical incarnation of these flop transitions. I didn't. To me it seemed that flop transitions were merely a piece of abstract mathematics without any bearing on the physics of string theory. In fact, based on the discussion in Chapter 10 in which we found that circular dimensions have a minimum radius, one might be tempted to say that string theory does not allow the sphere in Figure 11.3 to shrink all the way down to a pinched point. But remember, as also noted in Chapter 10, that if a chunk of space collapses—in this case, a spherical piece of a Calabi-Yau shape—as opposed to the collapse of a complete spatial dimension, the argument identifying small and large radii is not directly applicable. Nevertheless, even though this idea for ruling out flop transitions does not stand up to scrutiny, the possibility that the fabric of space could tear still seemed rather unlikely.
But then, in 1991 the Norwegian physicist Andy Lütken together with Paul Aspinwall, a graduate-school classmate of mine from Oxford and now a professor at Duke University, asked themselves what proved to be a very interesting question: If the spatial fabric of the Calabi-Yau portion of our universe were to undergo a space-tearing flop transition, what would it look like from the perspective of the mirror Calabi-Yau space? To understand the motivation for this question, you must recall that the physics emerging from either member of a mirror pair of Calabi-Yau shapes (if selected for the extra dimensions) is identical, but the complexity of the mathematics that a physicist must employ to extract the physics can differ significantly between the two. Aspinwall and Lütken speculated that the mathematically complicated flop transition of Figures 11.3 and 11.4 might have a far simpler mirror description—one that might give a more transparent view on the associated physics.
At the time of their work, mirror symmetry was not understood at the depth required to answer the question they posed. However, Aspinwall and Lütken noted that there did not seem to be anything in the mirror description that would indicate a disastrous physical consequence associated with the spatial tears of flop transitions. Around the same time, the work Plesser and I had done in finding mirror pairs of Calabi-Yau shapes (see Chapter 10) unexpectedly led us to think about flop transitions as well. It is a well-known mathematical fact that gluing various points together as in Figure 10.4—the procedure we had used to construct mirror pairs—leads to geometrical situations that are identical to the pinch and puncture in Figures 11.3 and 11.4. Physically, though, Plesser and I could find no associated calamity. Moreover, inspired by the observations of Aspinwall and Lütken (as well as a previous paper of theirs with Graham Ross), Plesser and I realized that we could repair the pinch mathematically in two different ways. One way led to the Calabi-Yau shape in Figure 11.3(a) while the other led to that in Figure 11.4(d). This suggested to us that the evolution from Figure 11.3(a) through Figure 11.4(d) was something that could actually occur in nature.
By late 1991, then, at least a few string theorists had a strong feeling that the fabric of space can tear. But no one had the technical facility to definitively establish or refute this striking possibility.
Inching Forward
Off and on during 1992, Plesser and I tried to show that the fabric of space can undergo space-tearing flop transitions. Our calculations yielded bits and pieces of supporting circumstantial evidence, but we could not find definitive proof. Sometime during the spring, Plesser visited the Institute for Advanced Study in Princeton to give a talk, and privately told Witten about our recent attempts to realize the mathematics of space-tearing flop transitions within the physics of string theory. After summarizing our ideas, Plesser waited for Witten's response. Witten turned from the blackboard and stared out of his office window. After a minute of silence, maybe two, he turned back to Plesser and told him that if our ideas worked out, "it would be spectacular." This rekindled our efforts. But after a while, with our progress stalled, each of us turned to working on other string theory projects.
Even so, I found myself mulling over the possibility of space-tearing flop transitions. As the months went by, I felt increasingly sure that they had to be part and parcel of string theory. The preliminary calculations Plesser and I had done, together with insightful discussions with David Morrison, a mathematician from Duke University, made it seem that this was the only conclusion that mirror symmetry naturally supported. In fact, during a visit to Duke, Morrison and I, together with some helpful observations from Sheldon Katz of Oklahoma State University, who was also visiting Duke at the time, outlined a strategy for proving that flop transitions can occur in string theory. But when we sat down to do the required calculations, we found that they were extraordinarily intensive. Even on the world's fastest computer, they would take more than a century to complete. We had made progress, but we clearly needed a new idea, one that could greatly enhance the efficiency of our calculational method. Unwittingly, Victor Batyrev, a mathematician from the University of Essen, revealed such an idea through a pair of papers released in the spring and summer of 1992, Batyrev had become very interested in mirror symmetry, especially in the wake of the success of Candelas and his collaborators in using it to solve
the sphere-counting problem described at the end of Chapter 10.
With a mathematician's perspective, though, Batyrev was unsettled by the methods Plesser and I had invoked to find mirror pairs of Calabi-Yau spaces. Although our approach used tools familiar to string theorists, Batyrev later told me that our paper seemed to him to be "black magic." This reflects the large cultural divide between the disciplines of physics and mathematics, and as string theory blurs their borders, the vast differences in language, methods, and styles of each field become increasingly apparent. Physicists are more like avant-garde composers, willing to bend traditional rules and brush the edge of acceptability in the search for solutions. Mathematicians are more like classical composers, typically working within a much tighter framework, reluctant to go to the next step until all previous ones have been established with due rigor. Each approach has its advantages as well as drawbacks; each provides a unique outlet for creative discovery. Like modern and classical music, it's not that one approach is right and the other wrong—the methods one chooses to use are largely a matter of taste and training.
Batyrev set out to recast the construction of mirror manifolds in a more conventional mathematical framework, and he succeeded. Inspired by earlier work of Shi-Shyr Roan, a mathematician from Taiwan, he found a systematic mathematical procedure for producing pairs of Calabi-Yau spaces that are mirrors of one another. His construction reduces to the procedure Plesser and I had found in the examples we had considered, but offers a more general framework that is phrased in a manner more familiar to mathematicians.
The flip side is that Batyrev's papers invoked areas of mathematics that most physicists had never previously encountered. I, for example, could extract the gist of his arguments, but had significant difficulty in understanding many crucial details. One thing, however, was clear: The methods of his paper, if properly understood and applied, could very well open a new line of attack on the issue of space-tearing flop transitions.
By late summer, energized by these developments, I decided that I wanted to return to the problem of flops with full and undistracted intensity. I had learned from Morrison that he was going on leave from Duke to spend a year at the Institute for Advanced Study, and I knew that Aspinwall would also be there, as a postdoctoral fellow. After a few phone calls and e-mails, I arranged to take leave from Cornell University and spend the fall of 1992 at the Institute as well.
A Strategy Emerges
One would be hard pressed to think of a more ideal place for long hours of intense concentration than the Institute for Advanced Study. Founded in 1930, it is set within gently rolling fields on the border of an idyllic forest a few miles from the campus of Princeton University. It is said that you can't get distracted from your work at the Institute, because, well, there aren't any distractions.
After leaving Germany in 1933, Einstein joined the Institute and remained there for the duration of his life. It takes little imagination to picture him pondering unified field theory in the Institute's quiet, lonely, almost ascetic surroundings. The legacy of deep thought infuses the atmosphere, which, depending on your own immediate state of progress, can be either exciting or oppressive.
Shortly after arriving at the Institute, Aspinwall and I were walking down Nassau Street (the main commercial street in the town of Princeton) trying to agree on a place to have dinner. This was no small task since Paul is as devout a meat eater as I am a vegetarian. In the midst of catching up on each other's lives as we were walking along, he asked me if I had any ideas about new things to work on. I told him I did, and recounted my take on the importance of establishing that the universe, if truly described by string theory, can undergo space-tearing flop transitions. I also outlined the strategy I had been pursuing, as well as my newfound hope that Batyrev's work might allow us to fill in the missing pieces. I thought that I was preaching to the converted, and that Paul would be excited by this prospect. He wasn't. In retrospect, his reticence was due largely to our good-natured and long-standing intellectual joust in which we each play devil's advocate to the other's ideas. Within days, he came around and we turned our full attention to flops.
By then, Morrison had also arrived, and the three of us met in the Institute's tea-room to formulate a strategy. We agreed that the central goal was to determine whether the evolution from Figure 11.3(a) to Figure 11.4(d) can actually occur in our universe. But a direct attack on the question was forbidding, because the equations describing this evolution are extremely difficult, especially when the spatial tear occurs. Instead, we chose to rephrase the issue using the mirror description, hoping that the equations involved might be more manageable. This is schematically illustrated in Figure 11.5, in which the top row is the original evolution from Figure 11.3(a) to Figure 11.4(d), and the bottom row is the same evolution from the perspective of the mirror Calabi-Yau shapes. As a number of us had already realized, it turns out that in the mirror rephrasing it appears that string physics is perfectly well behaved and encounters no catastrophes. As you can see, there does not seem to he any pinching or tearing in the bottom row in Figure 11.5. However, the real question this observation raised for us was this: Were we pushing mirror symmetry beyond the bounds of its applicability? Although the upper and lower Calabi-Yau shapes drawn on the far left-hand side of Figure 11.5 yield identical physics, is it true that at every step in the evolution to the right-hand side of Figure 11.5—necessarily passing through the pinch-tear-repair stage in the middle—the physical properties of the original and mirror perspective are identical?
Although we had solid reason to believe that the powerful mirror relationship holds for the shape progression leading to the tear in the upper Calabi-Yau shape in Figure 11.5, we realized that no one knew whether the upper and lower Calabi-Yau shapes in Figure 11.5 continue to be mirrors after the tear has occurred. This is a crucial question, because if they are, then the absence of a catastrophe in the mirror perspective would mean an absence in the original, and we would have demonstrated that space can tear in string theory. We realized that this question could be reduced to a calculation: Extract the physical properties of the universe for the upper Calabi-Yau shape after the tear (using, say, the upper-right Calabi-Yau shape in Figure 11.5) and for its supposed mirror (the lower-right Calabi-Yau shape in Figure 11.5), and see if they are identical.
It was this calculation to which Aspinwall, Morrison, and I devoted ourselves in the fall of 1992.
Late Nights at Einstein's Final Stomping Ground
Edward Witten's razor-sharp intellect is clothed in a soft-spoken demeanor that often has a wry, almost ironic, edge. He is widely regarded as Einstein's successor in the role of the world's greatest living physicist. Some would go even further and describe him as the greatest physicist of all time. He has an insatiable appetite for cutting-edge physics problems and he wields tremendous influence in setting the direction of research in string theory.
The breadth and depth of Witten's productivity is legendary. His wife, Chiara Nappi, who is also a physicist at the Institute, paints a picture of Witten sitting at their kitchen table, mentally probing the edge of string theory knowledge, and only now and then returning to pick up pen and paper to verify an elusive detail or two.3 Another story is told by a postdoctoral fellow who, one summer, had an office next to Witten's. He describes the unsettling juxtaposition of laboriously struggling with complex string theory calculations at his desk while hearing the incessant rhythmic patter of Witten's keyboard, as paper after groundbreaking paper poured forth directly from mind to computer file.
A week or so after I arrived, Witten and I were chatting in the Institute's courtyard, and he asked about my research plans. I told him about the space-tearing flops and the strategy we were planning to pursue. He lit up upon hearing the ideas, but cautioned that he thought the calculations would be horrendously difficult. He also pointed out a potential weak link in the strategy I described, having to do with some work I had done a few years earlier with Vafa and Warner. The issue b
e raised turned out to be only tangential to our approach for understanding flops, but it started him thinking about what ultimately turned out to be related and complementary issues.
Aspinwall, Morrison, and I decided to split our calculation in two pieces. At first a natural division might have seemed to involve first extracting the physics associated with the final Calabi-Yau shape from the upper row of Figure 11.5, and then doing the same for the final Calabi-Yau shape from the lower row of Figure 11.5. If the mirror relationship is not shattered by the tear in the upper Calabi-Yau, then these two final Calabi-Yau shapes should yield identical physics, just like the two initial Calabi-Yau shapes from which they evolved. (This way of phrasing the problem avoids doing any of the very difficult calculations involving the upper Calabi-Yau shape just when it tears.) It turns out, though, that calculating the physics associated with the final Calabi-Yau shape in the upper row is pretty straightforward. The real difficulty in carrying out this program lies in first figuring out the precise shape of the final Calabi-Yau space in the lower row of Figure 11.5—the putative mirror of the upper Calabi-Yau—and then in extracting the associated physics.
A procedure for accomplishing the second task—extracting the physical features of the final Calabi-Yau space in the lower row, once its shape was precisely known—had been worked out a few years earlier by Candelas. His approach, however, was calculationally intensive and we realized that it would require a clever computer program to carry it out in our explicit example. Aspinwall, who in addition to being a renowned physicist is a crackerjack programmer, took on this task. Morrison and I set out to accomplish the first task, namely, to identify the precise shape of the candidate mirror Calabi-Yau space.