Book Read Free

Love and Math

Page 34

by Frenkel, Edward


  Set. A collection of objects, such as the set {0,1,2,...,N−1} for a given natural number N.

  Sheaf. A rule that assigns a vector space to each point of a given manifold, satisfying certain natural properties.

  Shimura–Taniyama–Weil conjecture. The statement that there is a one-to-one correspondence between cubic equations and modular forms satisfying certain properties. Under this correspondence, the numbers of solutions of the cubic equation modulo prime numbers are equal to the coefficients of the modular form.

  SO(3). The group of rotations of a sphere.

  Sphere. A manifold that may be described as the set of all points in a flat three-dimensional space that are equidistant from a given point.

  Supersymmetry. A type of symmetry in a quantum field theory that exchanges bosons and fermions.

  Symmetry. A transformation of a given object that preserves its properties, such as its shape and position.

  Theory. A particular branch of mathematics or physics (such as number theory) or a specific model describing relations between objects (such as gauge theory with gauge group SO(3)).

  Vector space. The set of all vectors in a given n-dimensional flat space, carrying operations of addition of vectors and multiplication of vectors by numbers, satisfying natural properties.

  Index

  3D printing, 3, 23

  A-brane, 215–217, 220–222, 225, 280

  abelian group, see group, abelian

  algebraic closure, 274

  analogy, 4, 96, 99, 103, 106, 157, 263

  asymmetry, 22

  Atiyah, Michael, 209, 242

  atom, 9, 237

  automorphic function, 80, 93, 105, 154, 161, 173, 222, 275, 283

  automorphic representation, see representation, automorphic

  automorphic sheaf, see sheaf, automorphic

  avatar, 103

  B-brane, 215, 217, 220, 280

  Beilinson, Alexander, 142, 147, 182

  Ben-Zvi, David, 193, 216

  Bernstein, Joseph, 142, 146, 147, 166

  Betti number, 54, 56, 252

  Bhagavad-Gita, 103

  Bohr, Niels, 198

  borscht, 196

  Bott, Raoul, 146, 242

  braid group, 47–54, 59, 60, 251

  brane, 214, 215

  Cantor, Georg, 4, 226

  categorification, 156, 157

  category, 156, 280

  Chern, Shiing-Shen, 242

  circle, 19, 33, 36, 103, 113, 118, 120, 156, 206, 217, 277, 283, 285

  circle group, 19, 20, 22, 24, 47, 84, 93, 110, 118, 121, 180, 185, 200, 203, 218, 235, 248, 277, 283

  classical electromagnetism, see electromagnetism, classical

  complex number, 90, 100–103, 160, 177, 251, 256, 269, 276, 277, 283

  composition, 8, 248, 250, 283, 284

  of braids, 48, 49

  of rotations, 18, 20

  of symmetries, 19, 21, 247, 248, 255, 275

  conjecture, 81

  correlation function, 209, 214, 238, 281

  correspondence, 8, 283

  one-to-one, 52, 91, 92, 100, 102, 218, 257, 268, 279, 283, 286

  cross-product, 121, 269

  cryptography, 52, 86, 91, 240, 251, 261

  cubic equation, see equation, cubic

  Cummings, E.E., 182

  cup trick, 168, 171, 276

  curvature, 117

  curve over finite field, 103–105, 154, 160, 161, 216, 222, 262, 263, 283

  D-brane, see brane

  DARPA, 187, 188

  Darwin, Charles, 2, 117

  De Concini, Corrado, 183

  definition, 251

  Deligne, Pierre, 161, 191, 263

  Descartes, René, 22, 120, 262

  differential equation, 176

  dimension, 2, 24, 25, 113–118, 120, 121, 155, 159, 205, 206, 213, 284

  dimensional reduction, 205, 209, 213, 214, 280

  Dirac, Paul, 197

  Drinfeld, Vladimir, 62, 106, 152–154, 161, 166–172, 174–176, 182

  duality, 185, 196, 240, 284

  electromagnetic, 195, 197–199, 202, 203, 205, 210, 214, 216, 217, 222, 226, 280

  Duchamp, Marcel, 115, 116

  Eichler, Martin, 88

  Einstein, Albert, 2, 4, 27, 71, 99, 116–118, 191, 200, 201, 204, 236, 241

  electromagnetic duality, see duality, electromagnetic

  electromagnetism

  classical, 195, 207, 208

  quantum, 195, 197, 199, 208, 235

  elliptic curve, 91, 261, 263

  Enzensberger, Hans Magnus, 1

  equation, 83

  cubic, 83, 86, 88, 91, 92, 99, 102, 261, 263, 283

  differential, see differential equation

  polynomial, see polynomial equation

  Esenin-Volpin, Alexander, 63

  Euclid, 258

  Euler function, 60, 271

  Euler, Leonhard, 60, 277

  Farber, Thomas, 229, 230

  Feigin, Boris, 125–130, 148, 151, 161, 242

  Fermat’s Last Theorem, 4, 56, 58, 81–83, 92, 234, 258, 262, 284

  Fermat’s little theorem, 158, 271, 274

  Fermat, Pierre, 57, 81, 158, 253

  Fibonacci numbers, 87, 260

  fibration, 217, 219, 253, 276, 284

  toric, 219, 220

  finite field, 86, 91, 103, 104, 154, 158, 159, 161, 222, 269, 274, 283, 284

  flag manifold, 128

  flat space, see vector space

  fraction, see rational number

  free-field model, 124

  free-field realization, 124, 129, 130, 182

  Frobenius symmetry, 159, 274, 275

  Fuchs, Dmitry Borisovich, 45, 46, 54, 55, 60, 68, 69, 108, 109, 122, 125, 129

  function, 80, 156, 159, 176, 284

  rational, 263, 266

  fundamental group, 105, 106, 161, 173, 175–177, 180, 181, 215, 218, 220, 222, 251, 264, 266, 276–279, 284

  fundamental lemma, 279

  Gödel, Kurt, 191, 234

  Galilei, Galileo, 2

  Galois group, 75–78, 80, 92, 93, 98, 104, 106, 109, 154, 155, 159, 161, 167, 168, 173, 222, 234, 255, 257, 266, 275, 276, 284

  of a finite field, 159, 274

  Galois, Évariste, 76, 78, 240, 255

  gauge group, 185, 200, 203, 209, 210, 214, 235, 278, 284

  abelian, 185

  non-abelian, 185

  gauge theory, 185, 190, 200, 201, 203, 205, 207, 209, 210, 214, 235, 278, 284

  non-abelian, 185, 202

  Gelfand’s seminar, 61–67, 125

  Gelfand, Israel Moiseevich, 6, 29, 61, 62, 64, 65, 67, 68, 142

  Gell-Mann, Murray, 10, 11, 14, 26, 27

  generating function, 88, 89, 91

  Goddard, Peter, 190–192, 203, 204

  golden ratio, 260

  Goresky, Mark, 191, 193

  Graves, Reine, 231, 232

  Gross, Benedict, 146

  Gross, David, 226, 278

  Grothendieck, Alexander, 157, 158, 160, 226, 263

  group, 13, 19–22, 25, 72, 84, 109–112, 261, 270, 272, 284–286

  abelian, 52, 283

  finite, 111

  finite-dimensional, 111

  infinite, 111

  infinite-dimensional, 111

  non-abelian, 52, 285

  of permutations, 257

  solvable, 77, 257

  hadron, 11, 23, 26, 27

  Hardy, G.H., 188

  harmonic, 80, 90

  harmonic analysis, 78, 80, 81, 92, 97, 104, 154, 283, 284

  Harvard University, 7, 107, 141, 145, 150, 153, 182

  Higgs boson, 22, 198

  Hitchin fibration, 219, 223–225

  Hitchin moduli space, 209, 210, 214, 215, 219, 222, 224, 279, 280, 285

  Hitchin, Nigel, 209, 210

  identical symmetry, see symmetry, identical

  instanton, 209, 238

  Institute for Advanced Study, 4, 71, 95, 186, 190, 191, 204

  integer, 51, 52, 7
2, 251, 285

  inverse symmetry, see symmetry, inverse

  Jaffe, Arthur, 142, 144, 150

  Joyce, James, 10

  Kac, Victor, 122, 147, 150, 162, 163, 183

  Kac–Moody algebra, 97, 122–124, 127, 129, 130, 148, 161, 174, 175, 180–182, 184, 190, 269, 280, 285

  Kapustin, Anton, 216, 221

  Kazakov, Vladimir, 65, 66

  Kazhdan, David, 146, 147

  Khurgin, Yakov Isaevich, 133–136, 139, 140

  Kirillov, Alexander Alexandrovich, 43

  Kontsevich, Maxim, 215

  Langlands correspondence, see Langlands relation

  Langlands dual group, 167, 168, 170, 172, 173, 175, 181, 185, 203, 210, 219, 285

  Langlands Program, 3, 7, 70, 72, 80, 91–93, 95–97, 104, 152, 154, 160, 162, 173, 182, 184, 192, 205, 216, 222, 227, 228, 240, 243

  geometric, 105, 106

  Langlands relation, 8, 93, 105, 106, 154, 161, 168, 173, 182, 215, 221, 275, 283, 285

  Langlands, Robert, 4, 71, 78, 80, 191, 204, 233, 242, 243, 253

  Large Hadron Collider, 22, 27, 198

  Laumon, Gérard, 154, 161

  Letterman, David, 146

  Lie algebra, 119, 121, 268, 269, 285

  Lie group, 109, 111, 112, 126, 167, 173, 185, 200, 235, 284, 285

  finite-dimensional, 118

  infinite-dimensional, 118, 119

  Lie, Sophus, 109

  linear transformation, 248, 270, 275

  Logunov, Anatoly, 162–165

  loop, 8, 118, 119, 126, 174, 211, 212, 267, 269, 285

  loop group, 111, 118, 119, 126, 174, 182, 267, 269

  loop space, 118, 119, 267, 269

  Losev, Andrei, 238

  MacPherson, Robert, 191

  manifold, 8, 110, 112, 114, 117–119, 121, 128, 156, 157, 159, 208, 213, 267, 284, 285

  Manin, Yuri Ivanovich, 152, 209, 233

  Mann, Ben, 188, 190, 191

  map, 207–209, 212, 253, 266, 267, 270, 279, 284, 285

  Maxwell’s equations, 176, 194, 195, 201, 208, 278

  Maxwell, James Clerc, 194

  Mazur, Barry, 146

  Mekh-Mat, 28, 29, 42, 43, 55, 62, 164, 165, 249, 253

  MGU, see Moscow University

  Mills, Robert, 200

  mirror symmetry, 210, 214, 215, 217, 219–222, 280

  Mishima, Yukio, 231, 232, 236

  modular arithmetic, see modulo N

  modular form, 90–92, 94, 166, 261, 276, 285, 286

  modulo N, 20, 83–86, 158, 188, 258, 259, 271

  monodromy, 178–181, 266, 277

  Moody, Robert, 122

  Moscow University, 6, 28, 32, 35, 40, 162, 164, 249

  Muchnik Subbotovskaya, Bella, 46

  natural number, 51, 57, 72, 81–83, 85, 155, 273, 284–286

  Ne’eman, Yuval, 11

  Nekrasov, Nikita, 238

  neutron, 9, 11, 12, 26, 185

  Newton, Isaac, 241

  Ngô, Bao Châu, 243, 279

  non-abelian group, see group, non-abelian

  non-Euclidean geometry, 116, 248

  number field, 75, 77, 78, 80, 101, 104, 255, 256, 263, 266, 284, 285

  one-to-one correspondence, see correspondence, one-to-one

  oper, 181

  Pauli, Wolfgang, 11, 198

  Penrose, Roger, 234, 235

  Petrov, Evgeny Evgenievich, 12–14, 16, 28, 129

  Poincaré, Henri, 116

  polynomial, 251, 253, 263, 265, 283, 285

  polynomial equation, 76, 77, 83, 255, 256, 266, 286

  cubic, 257

  over finite field, 273, 274, 284

  quadratic, 76, 255

  quintic, 77, 255, 257

  prime number, 85, 86, 89, 100, 103, 158, 258, 259, 261, 270, 272, 275, 284, 286

  proton, 9, 11, 12, 26, 185

  quantum computing, 52, 273

  quantum electromagnetism, see electromagnetism, quantum

  quantum field theory, 195, 196, 198, 199, 207, 208, 212, 214, 238, 239, 280, 286

  quantum group, 145, 153

  quantum physics, 4, 9, 14, 23, 65, 97, 108, 118, 122, 124, 173, 183, 185, 192, 198, 202, 216, 217, 222, 225

  quark, 10, 11, 13–15, 23, 26, 27, 185, 195, 198

  rational number, 72–75, 77, 98, 254, 256, 263, 266, 273, 275, 285

  real number, 100–103, 262, 269

  relativity theory, 2, 99, 116–118, 201

  representation, 8, 24–26, 80, 109, 112, 275, 279, 286

  automorphic, 167, 173, 275

  of fundamental group, 174, 176, 180, 181, 215, 218, 220, 222, 277, 279

  of Galois group, 92, 104, 154, 274–276

  of Kac–Moody algebra, 127, 129, 130, 174, 175, 181

  two-dimensional, 24, 93, 112

  Reshetikhin, Nicolai, 143, 145, 153

  Ribet, Ken, 58, 81, 92, 262

  Riemann surface, 6, 98–100, 103–106, 154, 159–161, 173, 174, 176, 180, 181, 205, 207, 210, 212, 216, 220, 222, 262, 263, 266, 276, 279, 285

  Riemann, Bernhard, 2, 99, 117

  Rites of Love and Math, 7, 232, 236, 239, 281

  Rosetta stone, 4, 98, 104, 105, 154, 159–161, 173, 222, 225, 227, 283

  RSA algorithm, 60, 86, 188, 272

  Séminaire Bourbaki, 226

  Serre, Jean-Pierre, 227, 262

  set, 17, 19, 21, 84, 85, 102, 103, 250, 284, 286

  sheaf, 106, 157–161, 275, 286

  automorphic, 161, 173, 175, 181, 215, 221, 222

  Shevardnadze, Eduard, 182, 183

  Shimura, Goro, 94

  Shimura–Taniyama–Weil conjecture, 58, 81–83, 91–95, 166, 258, 262, 286

  sigma model, 208–211, 214, 215

  Simpson, Homer, 219, 224

  SO(3), group, 112–114, 119, 121, 123, 126–128, 155, 167, 168, 170, 180, 200, 223, 224, 267, 269, 275, 276, 285, 286

  sphere, 98, 112–114, 117–121, 127, 128, 205, 208, 252, 263, 281, 285, 286

  splitting field, 256, 257

  string theory, 118, 119, 122, 211–213

  strong force, 185, 200, 235

  SU(2), group, 200, 224, 235, 276

  superstring theory, 213, 214, 279, 280

  supersymmetry, 198, 199, 202, 235, 286

  symmetry, 15–19, 21, 23, 72, 74–78, 89, 90, 122, 123, 155, 194, 197, 240, 247, 248, 254–256, 268, 275, 286

  identical, 17, 19, 255

  inverse, 18, 19

  symmetry breaking, 22

  symmetry group, 14, 23, 76, 90, 119, 200, 224

  T–duality, 217

  tangent line, 120, 121

  tangent plane, 120

  tangent space, 120, 121, 268, 285

  Taniyama, Yutaka, 94

  target manifold, 208, 209, 212, 214

  Taylor, Richard, 82

  theorem, 251

  theory, 8, 286

  Thoreau, Henry David, 228, 233

  topology, 14, 105, 252

  torus, 98, 102, 105, 106, 213, 217, 218, 220, 221, 265, 266, 280

  degenerate, 223, 224

  mirror dual, 217

  Tsygan, Boris, 145

  unification, 70, 200, 213

  Van Gogh, Vincent, 3, 10

  Varchenko, Alexander Nikolaevich, 45

  vector, 121, 268, 269, 286

  vector field, 207

  vector space, 121, 155–157, 159, 207, 268–270, 275, 283, 286

  Vilonen, Kari, 187, 191, 193

  Virasoro algebra, 123, 269

  von Neumann, John, 191, 242

  Wakimoto, Minoru, 123

  weak force, 185, 200, 235

  Weil group, 274

  Weil, André, 78, 95, 96, 103, 104, 191, 227

  Weil, Simone, 96

  whole number, see natural number

  Wigner, Eugene, 202

  Wiles, Andrew, 58, 82, 83

  Witten, Edward, 186, 187, 190–192, 204, 205, 214–216, 221, 225, 226, 242, 280

  Yang, Chen Ning, 200, 201

  Yang–Mills theory, see gauge theory

&nbs
p; Yau, Shing-Tung, 146, 213, 220, 279

  Zagier, Don, 65

  zero-brane, 218, 219, 221, 222, 224, 225

  Zweig, George, 26

 

 

 


‹ Prev