46.N. Meand et al., “Too Tired to Tell the Truth: Self-Control Resource Depletion and Dishonesty,” JESP 45 (2009): 594; M. Hagger et al., “Ego Depletion and the Strength Model of Self-Control: A Meta-analysis,” Psych Bull 136 (2010): 495; C. DeWall et al., “Depletion Makes the Heart Grow Less Helpful: Helping as a Function of Self-Regulatory Energy and Genetic Relatedness,” PSPB 34 (2008): 1653; W. Hofmann et al., “And Deplete Us Not into Temptation: Automatic Attitudes, Dietary Restraint, and Self-Regulatory Resources as Determinants of Eating Behavior,” JESP 43 (2007): 497.
47.Footnote: M. Inzlicht and S. Marcora, “The Central Governor Model of Exercise Regulation Teaches Us Precious Little About the Nature of Mental Fatigue and Self-Control Failure,” Front Psych 7 (2016): 656.
48.J. Fuster, “The Prefrontal Cortex—an Update: Time Is of the Essence,” Neuron 30 (2001): 319.
49.K. Yoshida et al., “Social Error Monitoring in Macaque Frontal Cortex,” Nat Nsci 15 (2012): 1307; T. Behrens et al., “Associative Learning of Social Value,” Nat 456 (2008): 245
50.R. Dunbar, “The Social Brain Meets Neuroimaging,” TICS 16 (2011): 101; K. Bickart et al., “Intrinsic Amygdala-Cortical Functional Connectivity Predicts Social Network Size in Humans” J Nsci 32 (2012): 14729; K. Bickart, “Amygdala Volume and Social Network Size in Humans,” Nat Nsci 14 (2010): 163; R. Kanai et al., “Online Social Network Size Is Reflected in Human Brain Structure,” Proc Royal Soc B 279 (2012): 1327; F. Amici et al., “Fission-Fusion Dynamics, Behavioral Flexibility, and Inhibitory Control in Primates,” Curr Biol 18 (2008): 1415. For a similar finding in corvids, see A. Bond et al., “Serial Reversal Learning and the Evolution of Behavioral Flexibility in Three Species of North American Corvids (Gymnorhinus cyanocephalus, Nucifraga columbiana, Aphelocoma californica),” JCP 121 (2007): 372.
51.P. Lewis et al., “Ventromedial Prefrontal Volume Predicts Understanding of Others and Social Network Size,” Neuroimage 57 (2011): 1624; J. Sallet et al., “Social Network Size Affects Neural Circuits in Macaques,” Sci 334 (2011): 697.
52.J. Harlow, “Recovery from the Passage of an Iron Bar Through the Head,” Publication of the Massachusetts Med Soc 2 (1868): 327; H. Damasio et al., “The Return of Phineas Gage: Clues About the Brain from the Skull of a Famous Patient,” Sci 264 (1994): 1102; P. Ratiu and I. Talos, “The Tale of Phineas Gage, Digitally Remastered,” NEJM 351 (2004): e21; J. Van Horn et al., “Mapping Connectivity Damage in the Case of Phineas Gage,” PLoS ONE 7 (2012): e37454; M. Macmillan, An Odd Kind of Fame: Stories of Phineas Gage (Cambridge, MA: MIT Press, 2000); J. Jackson, “Frontis. and Nos. 949–51,” in A Descriptive Catalog of the Warren Anatomical Museum, reproduced in Macmillan, An Odd Kind of Fame. The photographs of Gage come from J. Wilgus and B. Wilgus, “Face to Face with Phineas Gage,” J the History of the Nsci 18 (2009): 340.
53.W. Seeley et al., “Early Frontotemporal Dementia Targets Neurons Unique to Apes and Humans,” Annals of Neurol 60 (2006): 660; R. Levenson and B. Miller, “Loss of Cells, Loss of Self: Frontotemporal Lobar Degeneration and Human Emotion,” Curr Dir Psych Sci 16 (2008): 289.
54.U. Voss et al., “Induction of Self Awareness in Dreams Through Frontal Low Curr Stimulation of Gamma Activity,” Nat Nsci 17 (2014): 810; J. Georgiadis et al., “Regional Cerebral Blood Flow Changes Associated with Clitorally Induced Orgasm in Healthy Women,” Eur J Nsci 24 (2006): 3305.
55.A. Glenn et al., “Antisocial Personality Disorder: A Current Review,” Curr Psychiatry Rep 15 (2013): 427; N. Anderson and K. Kiehl, “The Psychopath Magnetized: Insights from Brain Imaging,” TICS 16 (2012): 52; L. Mansnerus, “Damaged Brains and the Death Penalty,” New York Times, July 21, 2001, p. B9; M. Brower and B. Price, “Neuropsychiatry of Frontal Lobe Dysfunction in Violent and Criminal Behaviour: A Critical Review,” J Neurol, Neurosurgery & Psychiatry 71 (2001): 720.
56.J. Greene et al., “The Neural Bases of Cognitive Conflict and Control in Moral Judgment,” Neuron 44 (2004): 389; S. McClure et al., “Separate Neural Systems Value Immediate and Delayed Monetary Rewards,” Sci 306 (2004): 503.
57.A. Barbey et al., “Dorsolateral Prefrontal Contributions to Human Intelligence,” Neuropsychologia 51 (2013): 1361.
58.D. Knock et al., “Diminishing Reciprocal Fairness by Disrupting the Right Prefrontal Cortex,” Sci 314 (2006): 829.
59.D. Mobbs et al., “A Key Role for Similarity in Vicarious Reward,” Sci 324 (2009): 900; P. Janata et al., “The Cortical Topography of Tonal Structures Underlying Western Music,” Sci 298 (2002): 2167; M. Balter, “Study of Music and the Mind Hits a High Note in Montreal,” Sci 315 (2007): 758.
60.J. Saver and A. Damasio, “Preserved Access and Processing of Social Knowledge in a Patient with Acquired Sociopathy Due to Ventromedial Frontal Damage,” Neuropsychologia 29 (1991): 1241; M. Donoso et al., “Foundations of Human Reasoning in the Prefrontal Cortex,” Sci 344 (2014): 1481; T. Hare, “Exploiting and Exploring the Options,” Sci 344 (2014): 1446; T. Baumgartner et al., “Dorsolateral and Ventromedial Prefrontal Cortex Orchestrate Normative Choice,” Nat Nsci 14 (2011): 1468; A. Bechara, “The Role of Emotion in Decision-Making: Evidence from Neurological Patients with Orbitofrontal Damage,” Brain and Cog 55 (2004): 30.
61.A. Damasio, The Feeling of What Happens: Body and Emotion in the Making of Consciousness (Boston: Harcourt, 1999).
62.M. Koenigs et al., “Damage to the Prefrontal Cortex Increases Utilitarian Moral Judgments,” Nat 446 (2007): 865; B. Thomas et al., “Harming Kin to Save Strangers: Further Evidence for Abnormally Utilitarian Moral Judgments After Ventromedial Prefrontal Damage,” J Cog Nsci 23 (2011): 2186
63.A. Bechara et al., “Deciding Advantageously Before Knowing the Advantageous Strategy,” Sci 275 (1997): 1293; A. Bechara et al., “Insensitivity to Future Consequences Following Damage to Human Prefrontal Cortex,” Cog 50 (1994): 7.
64.L. Young et al., “Damage to Ventromedial Prefrontal Cortex Impairs Judgment of Harmful Intent,” Neuron 25 (2010): 845.
65.C. Limb and A. Braun, “Neural Substrates of Spontaneous Musical Performance: An fMRI Study of Jazz Improvisation,” PLoS ONE 3 (2008): e1679; C. Salzman and S. Fusi, “Emotion, Cognition, and Mental State Representation in Amygdala and Prefrontal Cortex,” Ann Rev of Nsci 33 (2010): 173.
66.J. Greene et al., “An fMRI Investigation of Emotional Engagement in Moral Judgment,” Sci 293 (2001): 2105; J. Greene et al., “The Neural Bases of Cognitive Conflict and Control in Moral Judgment,” Neuron 44 (2004): 389–400; J. Greene, Moral Tribes: Emotion, Reason, and the Gap Between Us and Them (New York: Penguin, 2013).
67.J. Peters et al., “Induction of Fear Extinction with Hippocampal-Infralimbic BDNF,” Sci 328 (2010): 1288; M. Milad and G. Quirk, “Neurons in Medial Prefrontal Cortex Signal Memory for Fear Extinction,” Nat 420 (2002): 70; M. Milad and G. Quirk, “Fear Extinction as a Model for Translational Neuroscience: Ten Years of Progress,” Ann Rev of Psych 63 (2012): 129; C. Lai et al., “Opposite Effects of Fear Conditioning and Extinction on Dendritic Spine Remodeling,” Nat 483 (2012): 87. Some recent work suggests involvement of both the ventral mPFC and the basomedial amygdala in this process: A. Adhikari et al., “Basomedial Amygdala Mediates Top-Down Control of Anxiety and Fear,” Nat 527 (2016): 179.
68.K. Ochsner et al., “Rethinking Feelings: An fMRI Study of the Cognitive Regulation of Emotion,” J Cog Nsci 14 (2002): 1215; G. Sheppes and J. Gross, “Is Timing Everything? Temporal Considerations in Emotion Regulation,” PSPR 15 (2011): 319; G. Sheppes and Z. Levin, “Emotion Regulation Choice: Selecting Between Cognitive Regulation Strategies to Control Emotion,” Front Human Neurosci 7 (2013): 179; J. Gross, “Antecedent- and Response-Focused Emotion Regulation: Divergent Consequences for Experience, Expression, and Physiology,” JPSP 74 (1998): 224; J. Gross, “Emotion Regulation: Affective, Cognitive, and Social Consequences,” Psychophysiology 39 (2002): 281; K. Ochsner and J. Gross, “The Cognitive Control o
f Emotion,” TICS 9 (2005): 242.
69.M. Lieberman et al., “The Neural Correlates of Placebo Effects: A Disruption Account,” NeuroImage 22 (2004): 447; P. Petrovic et al., “Placebo and Opioid Analgesia: Imaging a Shared Neuronal Network,” Sci 295 (2002): 1737.
70.J. Beck, Cognitive Behavior Therapy, 2nd edition (New York: Guilford Press, 2011); P. Goldin et al., “Cognitive Reappraisal Self-Efficacy Mediates the Effects of Individual Cognitive-Behavioral Therapy for Social Anxiety Disorder,” J Consulting Clin Psych 80 (2012): 1034.
71.A. Bechara et al., “Failure to Respond Autonomically to Anticipated Future Outcomes Following Damage to Prefrontal Cortex,” Cerebral Cortex 6 (1996): 215; C. Martin et al., “The Effects of Vagus Nerve Stimulation on Decision-Making,” Cortex 40 (2004): 605.
72.G. Bodenhausen et al., “Negative Affect and Social Judgment: The Differential Impact of Anger and Sadness,” Eur J Soc Psych 24 (1994): 45; A. Sanfey et al., “The Neural Basis of Economic Decision-Making in the Ultimatum Game,” Sci 300 (2003): 1755; K. Gospic et al., ”Limbic Justice: Amygdala Involvement in Immediate Rejections in the Ultimatum Game,” PLoS ONE 9 (2011): e1001054.
73.D. Wegner, “How to Think, Say, or Do Precisely the Worst Thing on Any Occasion,” Sci 325 (2009): 58.
74.R. Davidson and S. Begley, The Emotional Life of Your Brain (New York: Hudson Street Press, 2011); A. Tomarken and R. Davidson, “Frontal Brain Activation in Repressors and Nonrepressors,” J Abnormal Psych 103 (1994): 339.
75.A. Ito et al., “The Contribution of the Dorsolateral Prefrontal Cortex to the Preparation for Deception and Truth-Telling,” Brain Res 1464 (2012): 43; S. Spence et al., “A Cognitive Neurobiological Account of Deception: Evidence from Functional Neuroimaging,” Philosophical Transactions of the Royal Soc London Series B 359 (2004): 1755; I. Karton and T. Bachmann, “Effect of Prefrontal Transcranial Magnetic Stimulation on Spontaneous Truth-Telling,” BBR 225 (2011): 209; Y. Yang et al., “Prefrontal White Matter in Pathological Liars,” Brit J Psychiatry 187 (2005): 320.
76.D. Carr and S. Sesack, “Projections from the Rat Prefrontal Cortex to the Ventral Tegmental Area: Target Specificity in the Synaptic Associations with Mesoaccumbens and Mesocortical Neurons,” J Nsci 20 (2000): 3864; M. Stefani and B. Moghaddam, “Rule Learning and Reward Contingency Are Associated with Dissociable Patterns of Dopamine Activation in the Rat Prefrontal Cortex, Nucleus Accumbens, and Dorsal Striatum,” J Nsci 26 (2006): 8810.
77.T. Danjo et al., “Aversive Behavior Induced by Optogenetic Inactivation of Ventral Tegmental Area Dopamine Neurons Is Mediated by Dopamine D2 Receptors in the Nucleus Accumbens,” PNAS 111 (2014): 6455; N. Schwartz et al., “Decreased Motivation During Chronic Pain Requires Long-Term Depression in the Nucleus Accumbens,” Nat 345 (2014): 535.
78.J. Cloutier et al., “Are Attractive People Rewarding? Sex Differences in the Neural Substrates of Facial Attractiveness,” J Cog Nsci 20 (2008): 941; K. Demos et al., “Dietary Restraint Violations Influence Reward Responses in Nucleus Accumbens and Amygdala,” J Cog Nsci 23 (2011): 1952.
79.Footnote: R. Deaner et al., “Monkeys Pay per View: Adaptive Valuation of Social Images by Rhesus Macaques,” Curr Biol 15 (2005): 543.
80.V. Salimpoor et al., “Interactions Between the Nucleus Accumbens and Auditory Cortices Predicts Music Reward Value,” Sci 340 (2013): 216; G. Berns and S. Moore, “A Neural Predictor of Cultural Popularity,” J Consumer Psych 22 (2012): 154; S. Erk et al., “Cultural Objects Modulate Reward Circuitry,” Neuroreport 13 (2002): 2499.
81.A. Sanfey et al., “The Neural Basis of Economic Decision-Making in the Ultimatum Game,” Sci 300 (2003): 1755. Also see J. Moll et al., “Human Front-Mesolimbic Networks Guide Decisions About Charitable Donation,” PNAS 103 (2006): 15623; W. Harbaugh et al., “Neural Responses to Taxation and Voluntary Giving Reveal Motives for Charitable Donations,” Sci 316 (2007): 1622.
82.D. De Quervain et al., “The Neural Basis of Altruistic Punishment,” Sci 305 (2004): 1254; B. Knutson, “Sweet Revenge?” Sci 305 (2004): 1246.
83.M. Delgado et al., “Understanding Overbidding: Using the Neural Circuitry of Reward to Design Economic Auctions,” Sci 321 (2008): 1849; E. Maskin, “Can Neural Data Improve Economics?” Sci 321 (2008): 1788.
84.H. Takahasi et al., “When Your Gain Is My Pain and Your Pain Is My Gain: Neural Correlates of Envy and Schadenfreude,” Sci 323 (2009): 890; K. Fliessbach et al., “Social Comparison Affects Reward-Related Brain Activity in the Human Ventral Striatum,” Sci 318 (2007): 1305.
85.W. Schultz, “Dopamine Signals for Reward Value and Risk: Basic and Recent Data,” Behav and Brain Functions 6 (2010): 24.
86.J. Cooper et al., “Available Alternative Incentives Modulate Anticipatory Nucleus Accumbens Activation,” SCAN 4 (2009): 409; D. Levy and P. Glimcher, “Comparing Apples and Oranges: Using Reward-Specific and Reward-General Subjective Value Representation in the Brain,” J Nsci 31 (2011): 14693.
87.P. Tobler et al., “Adaptive Coding of Reward Value by Dopamine Neurons,” Sci 307 (2005): 1642.
88.W. Schultz, “Dopamine Signals for Reward Value and Risk: Basic and Recent Data,” Behav and Brain Functions 6 (2010): 24; J. Cohen et al., “Neuron-Type-Specific Signals for Reward and Punishment in the Central Tegmental Area,” Nat 482 (2012): 85; J. Hollerman and W. Schultz, “Dopamine Neurons Report an Error in the Temporal Prediction of Reward During Learning,” Nat Nsci 1 (1998): 304; A. Brooks et al., “From Bad to Worse: Striatal Coding of the Relative Value of Painful Decisions,” Front Nsci 4 (2010): 1.
89.B. Knutson et al., “Neural Predictors of Purchases,” Neuron 53 (2007): 147.
90.P. Sterling, “Principles of Allostasis: Optimal Design, Predictive Regulation, Pathophysiology and Rational Therapeutics,” in Allostasis, Homeostasis, and the Costs of Adaptation, ed. J. Schulkin (Cambridge, MA: MIT Press, 2004).
91.B. Knutson et al., “Anticipation of Increasing Monetary Reward Selectively Recruits Nucleus Accumbens,” J Nsci 21 (2001): RC159.
92.G. Stuber et al., “Reward-Predictive Cues Enhance Excitatory Synaptic Strength onto Midbrain Dopamine Neurons,” Sci 321 (2008): 1690; A. Luo et al., “Linking Context with Reward: A Functional Circuit from Hippocampal CA3 to Ventral Tegmental Area,” Sci 33 (2011): 353; J. O’Doherty, “Reward Representations and Reward-Related Learning in the Human Brain: Insights from Neuroimaging,” Curr Opinions in Neurobiol 14 (2004): 769; M. Cador et al., “Involvement of the Amygdala in Stimulus-Reward Associations: Interaction with the Ventral Striatum,” Nsci 30 (1989): 77; J. Britt et al., “Synaptic and Behavioral Profile of Multiple Glutamatergic Inputs to the Nucleus Accumbens,” Neuron 76 (2012): 790; G. Stuber et al., “Optogenetic Modulation of Neural Circuits That Underlie Reward Seeking,” BP 71 (2012): 1061; F. Ambroggi et al., “Basolateral Amygdala Neurons Facilitate Reward-Seeking Behavior by Exciting Nucleus Accumbens Neurons,” Neuron 59 (2008): 648.
93.S. Hyman et al., “Neural Mechanisms of Addiction: The Role of Reward-Related Learning and Memory,” Ann Rev of Nsci 29 (2006): 565; B. Lee et al., “Maturation of Silent Synapses in Amygdala-Accumbens Projection Contributes to Incubation of Cocaine Craving,” Nat Nsci 16 (2013): 1644. For a consideration of compulsive behaviors as a sort of addiction: S. Rauch and W. Carlezon, “Illuminating the Neural Circuitry of Compulsive Behaviors,” Sci 340 (2013): 1174; S. Ahmari et al., “Repeated Cortico-Striatal Stimulation Generates Persistent OCD-like Behavior,” Sci 340 (2013): 1234; E. Burguiere et al., “Optogenetic Stimulation of Lateral Orbitofronto-Striatal Pathway Suppresses Compulsive Behaviors,” Sci 340 (2013): 1243.
94.S. Flagel et al., “A Selective Role for Dopamine in Stimulus-Reward Learning,” Nat 469 (2011): 53; K. Burke et al., “The Role of the Orbitofrontal Cortex in the Pursuit of Happiness and More Specific Rewards,” Nat 454 (2008): 340.
95.P. Tobler et al., “Adaptive Coding of Reward Value by Dopamine Neurons,” S
ci 307 (2005): 1642; C. Fiorillo et al., “Discrete Coding of Reward Probability and Uncertainty by Dopamine Neurons,” Sci 299 (2003): 1898.
96.B. Knutson et al., “Distributed Neural Representation of Expected Value,” J Nsci 25 (2005): 4806; M. Stefani and B. Moghaddam, “Rule Learning and Reward Contingency Are Associated with Dissociable Patterns of Dopamine Activation in the Rat Prefrontal Cortex, Nucleus Accumbens, and Dorsal Striatum,” J Nsci 26 (2006): 8810.
97.R. Habib and M. Dixon, “Neurobehavioral Evidence for the “Near-Miss” Effect in Pathological Gamblers,” J the Exp Analysis of Behav 93 (2010): 313; M. Hsu et al., “Neural Systems Responding to Degrees of Uncertainty in Human Decision-Making,” Sci 310 (2006): 1680.
98.A. Braun et al., “Dorsal Striatal Dopamine Depletion Impairs Both Allocentric and Egocentric Navigation in Rats,” Neurobiol of Learning and Memory 97 (2012): 402; J. Salamone, “Dopamine, Effort, and Decision Making,” Behavioral Nsci 123 (2009): 463; I. Whishaw and S. Dunnett, “Dopamine Depletion, Stimulation or Blockade in the Rat Disrupts Spatial Navigation and Locomotion Dependent upon Beacon or Distal Cues,” BBR 18 (1985): 11; J. Salamone and M. Correa, “The Mysterious Motivational Functions of Mesolimbic Dopamine,” Neuron 76 (2012): 470; H. Tsai et al., “Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning,” Sci 324 (2009): 1080; P. Phillips et al., “Sub-second Dopamine Release Promotes Cocaine Seeking,” Nat 422 (2003): 614; M. Pessiglione et al., “Dopamine-Dependent Prediction Errors Underpin Reward-Seeking Behavior in Humans,” Nat 442 (2008): 1042.
99.Footnote: M. Numan and D. Stoltzenberg, “Medial Preoptic Area Interactions with Dopamine Neural systems in the Control of the Onset and Maintenance of Maternal Behavior in Rats,” Front Neuroendo 30 (2009): 46.
100.S. McClue et al., “Separate Neural Systems Value Immediate and Delayed Monetary Rewards,” Sci 306 (2004): 503; J. Jennings et al., “Distinct Extended Amygdala Circuits for Divergent Motivational States,” Nat 496 (2013): 224.
Behave: The Biology of Humans at Our Best and Worst Page 74