Planet of the Bugs: Evolution and the Rise of Insects
Page 27
CHAPTER 9: CRETACEOUS BLOOM AND DOOM
Bandi, C., M. Sironi, G. Damiani, L. Magrassi, C. A. Nalepa, U. Laudani, and L. Sacchi. “The Establishment of Intracellular Symbiosis in an Ancestor of Cockroaches and Termites.” Proceedings of the Royal Society of London Series B 259 (1995): 293–99.
Desalle, R., J. Gatesy, W. Wheeler, and D. Grimaldi. “DNA Sequences from a Fossil Termite in Oligo-Miocene Amber and Their Phylogenetic Implications.” Science 257 (1992): 1933–36.
Doyle, James A. “Molecular and Fossil Evidence on the Origin of Angiosperms.” Annual Review of Earth and Planetary Sciences 40 (2012): 301–26.
Grandcolas, P., and P. Deleporte. “The Origin of Protistan Symbionts in Termites and Cockroaches: A Phylogenetic Perspective.” Cladistics 12 (1996): 93–98.
Grimaldi, David. “A Fossil Mantis (Insecta: Mantodea) in Cretaceous Amber of New Jersey, with Comments on the Early History of the Dictyoptera.” American Museum Novitates 3024 (1997): 1–11.
Lo, N., G. Tokuda, H. Watanabe, H. Rose, M. Slaytor, K. Maekawa, C. Bandi, and H. Noda. “Evidence from Multiple Gene Sequences Indicates That Termites Evolved from Wood-Feeding Cockroaches.” Current Biology 10 (2000): 801–4.
Raup, David M. The Nemesis Affair: A Story of the Death of Dinosaurs and the Ways of Science. New York: W. W. Norton, 1986.
Schmidt, Justin O. “Hymenoptera Venoms: Striving Toward the Ultimate Defense Against Vertebrates.” In Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators, edited by David L. Evans and Justin O. Schmidt, 387–419. Albany: State University of New York Press, 1990.
Thorne, Barbara L. “A Case for Ancestral Transfer of Symbionts between Cockroaches and Termites.” Proceedings of the Royal Society of London Series B 241 (1990): 37–41.
. “Evolution of Eusociality in Termites.” Annual Review of Ecology and Systematics 28 (1997): 27–54.
Thorne, Barbara L., and James M. Carpenter. “Phylogeny of the Dictyoptera.” Systematic Entomology 17 (1992): 253–68.
Thorne, Barbara L., David A. Grimaldi, and K. Krishna. “Early Fossil History of Termites.” In Termites: Evolution, Sociality, Symbioses, Ecology, edited by T. Abe, D. E. Bignell, and M. Higashi, 77–93. Dordrecht: Kluwer, 2000.
Thorne, Barbara L., and James F. A. Traniello. “Comparative Social Biology of Basal Taxa of Ants and Termites.” Annual Review of Entomology 48 (2003): 283–306.
CHAPTER 10: CENOZOIC REFLECTIONS
Erwin, Terry L. “How Many Species Are There? Revisited.” Conservation Biology 5 (1991): 330–33.
. “The Tropical Forest Canopy: The Heart of Biotic Diversity.” In Biodiversity, edited by Edward O. Wilson, 123–29. Washington, D.C.: National Academy Press, 1988.
. “Tropical Forests: Their Richness in Coleoptera and Other Arthropod Species.” Coleopterist’s Bulletin 36 (1982): 74–75.
Hutchinson, E. E. “Homage to Santa Rosalia or Why Are There So Many Kinds of Animals?” American Naturalist 93 (1959): 145–159.
Johanson, Donald C., and Maitland A. Edey. Lucy: The Beginnings of Humankind. New York: Simon and Schuster, 1981.
Labandeira, Conrad C. “The Fossil Record of Insect Extinction: New Approaches and Future Directions.” American Entomologist 51 (2005): 14–29.
Lovejoy, C. O. “Reexamining Human Origins in Light of Ardipithecus ramidus.” Science 326 (2009): 74–78.
Shaw, Scott R. “Essay on the Evolution of Adult-Parasitism in the Subfamily Euphorinae (Hymenoptera: Braconidae).” Proceedings of the Russian Entomological Society, St. Petersburg 75 (2004): 1–15.
White, T. D., B. Asfaw, Y. Beyene, Y. Haile-Selassie, C. Lovejoy, G. Suwa, and G. WoldeGabriel. “Ardipithecus ramidus and the Paleobiology of Early Hominids.” Science 326 (2009): 64–86.
POSTSCRIPT: THE BUGGY UNIVERSE HYPOTHESIS
Armitage, A. “The Cosmology of Giordano Bruno.” Annals of Science 6 (1948): 24–31.
Gould, Stephen Jay. “The Evolution of Life on the Earth.” Scientific American 271 (1994): 85–91.
Greene, Brian. The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. New York: Vintage Books, 1999.
Orgel, Leslie E. “The Origin of Life on the Earth.” Scientific American 271 (1994): 77–83.
Rebek, Julius Jr. “Synthetic Self-Replicating Molecules.” Scientific American 271 (1994): 48–55.
Sagan, Carl. “The Search for Extraterrestrial Life.” Scientific American 271 (1994): 93–99.
Silk, Joseph. A Short History of the Universe. New York: Scientific American Library, 1997.
Taylor, G. Jeffrey. 1994. “The Scientific Legacy of Apollo.” Scientific American 271 (1994): 40–47.
Taylor, S. R. “The Origin of the Moon.” American Scientist 75 (1987): 469–77.
Yates, F. Giordano Bruno and the Hermetic Tradition. Chicago: University of Chicago Press, 1964.
Index
Page numbers in italics refer to figures. The abbreviation “pl.” refers to color plates.
abdomen, xi, 11, 60, 76, 80, 85, pl. 8
abundance, 9, 178–79
Aculeata, 160
adaptations: to extreme environments, 3; hypermetamorphic, 143–45; novel, 113
adaptive radiation, 145, 156, 180–81
agriculture, 182
air dragons, 87, 89–90, 94, 99, 113, 131, 136
algae, 47–48, 51, 106, 108, 126, 174–76
alkaloids, 121, 159, 206n15
allergies, 167–8
Allosaurus, 134–35, 209n4
Alvarez, Luis, 92, 168
Amazon: basin, 171, 176, 184, 186; River, 155, 171; societies, 164
amino acids, 24, 188
amphibians, 3, 18, 94, 120–21, 126, 173, 181, 203n1 (ch. 4); age of, 53; Carboniferous, 73, 76, 84, 90; Devonian, 55–56; eggs of, 87; first, 55; keyhole, 75–76; tadpoles of, 87
anal trophallaxis, 148
Andes, 155, 170–71, 174, 176, 185
angiosperms, xiii, 2, 156–57, 159, 165–66
animals: complex, 92; exoskeletal, 26; first land, 36; land, 37; multicellular, 20, 23, 29, 191; terrestrial, 35, 40; vertebrate, 19; warm-blooded, 94
annelids, 26–27, 30, 43, 58
Anomalocaris, 19, 136
anoxia, 97
Antarctica, 24, 65, 112, 155
antennae, xi, 45, 59, 67, 117
antifreeze, 3, 65
ants, 1, 3, 15, 75, 117, 128, 160, 162–64, 166–67, 176, 179, 191; army, 163; bullet, 212n9; Formica, 14; gigantic mutated, 92; super-colonies of, 9; weaver, 212n7; worker, 100, 205n9
Apatosaurus, 132, 154, 208n2
aphids, 102, 163, 166
Apidae, 10
aposematism, 14, 84, 121, 151, pl. 7–8
appendages: feeding, 19, 45, 117; filamentous, 76; jointed, 11, 20, 27, 29–30, 31, 37, 93; taillike, 143–44
aquatic insects, x, 3, 79–80, 87, 97–99, 106–9, 117, 124–25, 129, 143, 181, 204n2, 206n16
arachnids, 41
Archaeognatha, 67, 68, 205n5
Archaeopteryx, 149–50, 210–11nn12–13
Arthropoda, 11, 20
arthropods, 11, 17, 20, 27, 31, 37, 188, 190–92; age of, 19; Cambrian, 16, 19–20, 23, 27; characteristics of, 31, 93; defined, 30; Devonian, 54, 56; first, x, 17, 27; footprints of, 40; giant, 92–93; hexapod, 67–68; in film, 92–93; microscopic, 75; molting of, 61; predatory, 19, 173; scavenging, 69; Silurian, xi, 37; soil-dwelling, 58, 65, 74, 79; terrestrial, 49
assassin bugs, 126–27, pl. 6
asteroids, xiii, 15, 23, 96, 99, 113, 154, 168–69, 172, 190
astrobiology, 189
atmosphere: earth’s, 24–25; oxygen rich, 188
Australopithecus, 213n1
axillary sclerites, 88
bacteria, 5–6, 18–19, 23–24, 26, 47, 64, 148, 176, 189, 191
ballast stones, 107
bark: beetles, 74; lice, 74–75, 110–11, 179, 208n14; tree, 74, 110, pl. 4
bat flies, 13, 13, 181
bats, xii, 13, 81,
85, 181, 186
beaches, 40–41, 45, 52–53, 55
beaks, 82, 98, 100, 103, 116, 126
bee flies, 157
bees, 6, 10, 15, 74–75, 89, 117, 128, 154, 157, 160, 162, 164, 167, 169, 179, 183, 211n5; Bombus, 10; bumble, 10; carpenter, 10; first, 152; honey, 10; primitive, 162
beetles, 5, 11, 89, 94–95, 109–10, 114, 118, 121–22, 129, 140, 151, 156–57, 169, 176, 179, 183, 191, 205n6; bark, 74; beaver parasite, 13; click, xiii; dung-feeding, 1, 121; feather-winged, 103; first, 95, 110; flat-headed, 74; Goliath, 86–87, 131; ground, 10; grubs of, 124, 138, 140; Hercules, 131; inordinate fondness for, 192–93; June, 1; Jurassic, xiii; ladybug, 1; leaf, xiii, pl. 10; long-horned, viii, x–xiv; metallic, xiii; parasitic, 13; Permian, xii, 15, 94; rhinoceros, 132; scarab, xiii; subterranean, 3; weevil, xiii; wood-boring, xii–xiii, 74–75, 109, 135, 179
behavior: defensive, 39, 147, 179; egg-laying, 141, 160; lekking, 204n1 (ch. 5); nocturnal, 42, 89, 123–24; parasitic, 136–46; predatory, 136; social, 128; territorial, 164
Berlese funnel, 65
bias: arthropodan, 40; human-centrist, 18, 38, 55
big bang, 37, 185
bilateral symmetry, 30
binomial nomenclature, 8
biodegradation, 2
biodiversity, 173; crisis, 183
bioindicators, 5
biological species concept, 6
biomass: arthropod, 64; host, 146; insect, 3, 128; plant, 75, 90; vertebrate, 3, 128
biophilia, 154
bipedalism, 61
bird lice, 13, 167, 181
birds, xii, 3, 15, 18, 73–75, 80–81, 84–85, 116, 120, 130, 165, 167, 169, 174, 181, 186; first, 116, 122, 149–51; migratory, 116; nests of, 74, 151; oldest-known, 149; shore, 114
Blattaria, 89, 99, 122
blood, 78, 106, 135, 141–43, 206n2
body: forms, 27, 42, 59, 143; lice, 2; parts, 11; plans, 27; segmented, 93; size, 62–63, 103
Bombyliidae, 157
book: gills, 42; lice, 110; lungs, 42
brachiopods, 39, 43, 54, 95, 207n4
Braconidae, 10, 128, 144
brains, 29, 59, 134, 166
branches, 57, 103, 120, 162, 172, 175
bristletails, xi, 61, 67–69, 68, 76, 79, 129, 146–47, 175, 205n5, 205n8
bromeliads, xi, 3, 22, 89, 175, 181, 186
brontosaurs, 117, 127, 132–35, 208n2
buggy universe hypothesis, 191–92
bugs, 11, 15, 89, 94, 151, 163, 179, 191; assassin, 126–27, pl. 6; bed, 126; giant water, 126; hyperdiversity of, xiv; plant, 126, 157; royal palm, 1; seed, 126; stink, 126, 154; true, xiv, 11, 118, 122, 126–27; velvety shore, 1
Burgess Shale, 18, 45
burrows, 25–26, 29
butterflies, 5–7, 11, 15, 70, 84, 89, 105, 154, 157, 159, 169, 191; Altinote, 184, pl. 8; birdwing, 1; brush-footed, 60; first, 152, 158; hyperdiversity of, xiv; malachite, pl. 1; monarch, 6–7; nymphalid, pl. 1, pl. 8; papilionid, 144; viceroy, 6–7
caddisflies, 11, 95, 99, 106–9, 117–18, 122, 208n12
calcium carbonate, 23–24, 26
Calymene celebra, 38–39
Cambrian: arthropods, x, 16, 173; Early, 30, 45; explosion, 20, 23, 25, 80, 94, 190; fossils, 25; Late, 27, 33–34, 54; macrofauna, 26; period, x, 17–35, 37, 39, 56, 96, 181; seas, 27; shallow marine communities, 22; trilobites, 21, 27, 32–35
Campodeidae, 66
camouflage, 14, 84, pl. 1–4
Carabidae, 10
carbon, 23, 188
carbon dioxide, 23–24, 49, 75, 79, 85, 96–97
Carboniferous: atmosphere, 79; beetles, 205n6; climate, 78; coal-forming swamps, 17, 73–75, 79; Early, 75; Gnetales, 156; horsetails, 75, 95; Late, 75, 80–82, 87, 89–90; mayflies, 73; Pennsylvanian subperiod of, 71, 76; period, xi–xii, 15, 60, 69, 71–91, 93, 96, 99, 146, 173, 175–76, 181, 204n2; plant species, 73–74, 95, 205n13; seed ferns, 73, 95
cascade effect, 183
castes, 147, 148, 163–64; defined, 147; reproductive, 147; soldier, 147, 163; worker, 147, 163
caterpillars, 61, 105, 120, 144, 148, 157–58, 161–63, 176, 179, 181, 184; hemileucine, pl. 11; inchworm, 1
caves, 3, 46, 89, 168
cells: bee, 162; eukaryotic, 24; giant, 143; overwintering, 116
cellulose, 49–50, 75, 102, 109, 138, 147
Cenozoic: dinosaurs, 174; era, xiv, 15, 170–86; forests, 74
centipedes, 11, 20, 30, 45–46, 50, 56, 62, 84, 90, 173, 175, 206n16
cephalopods, 33–34, 41, 54
Cerambycidae, viii
cerci, 66, 76
Cercopidae, pl. 7
chaos, 2, 168
charcoal, 63
chelicerae, 43
chemical: communication, 164; defenses, 84, 102, 121, 158–60, 206n15, pl. 7–8; detection, 59; pheromones, 78, 164
chert, 63, 68
child labor, 164
chimpanzees, 172
chironomid midges, 4
chlorophyll, 174, 192, 215n1
chordates, 27
Chrysomelidae, pl. 10
cicadas, ix, 102, 120–21; periodical, 1
circulation, 26, 49, 60, 141
clams, 39
classification, 10–11
climate: arid terrestrial, 113; change, 97, 103, 112–13, 168, 185, 190; cool, 176; dry, 96; east African, 172
cloud forest, 66, 171, 173–77, pl. 10
coal, 15, 17, 73–76, 205n7; swamps, 79, 84, 90, 176
cockroaches, 1, 11, 61, 89–90, 99–100, 114, 118, 122, 147; age of, 89; Carboniferous, 75, 84, 206n17; ovipositor-bearing, 89, 206n17; social, 147; subterranean, 3, 89; wood, 75, 90; wood-eating, 75, 90, 110, 147
cocoons, 106
coevolution, 2, 156–57, 159–60, 165–66, 192
cohesion, 204n2 (ch. 4)
cold-bloodedness, 14, 77–78
Coleoptera, 11, 109, 111, 122, 205n6, pl. 10
Collembola, 4, 63–65, 64, 66
colonization: insect, 112; of land, 37–38, 40, 152, 173, 190–91; of plants, 113, 157; of ponds, 87; of streams, 106–9, 112
coloration, 82–84; aposematic, 14, 121, 151, pl. 8; cryptic, 84, 121–22, pl. 2–4; disruptive, 78, pl. 1; warning, 14, 78, 84, 121, pl. 7–8
comets, 23, 99, 168
communities: aquatic insect, 107; arthropod, 56; big animal, 154; dinosaur, 166; first forest, xi, 57–58, 63; first terrestrial, 36–51, 181; flower-associated insect, 155; insect, 51; land, 95; land-based, 37; land plant, xi, 56–57, 69; of life, 22–23, 37, 95; marine reef, 69; mixing of, 112; near-shore terrestrial, 97, 112; ocean, 69, 95; shallow marine, 22, 25; tree-like plant, 69; wetland, 112; wood-consuming, 75
competition, 99, 104, 112, 144; for marine niches, 59; for sunlight, 78, 174
complexity, 154, 173, 181, 185, 189; ecological, 95
complex metamorphosis, 91, 95, 111–12, 181, 205n6, 207n8
conifers, 73, 82, 90, 95, 117, 120, 127, 129, 134, 156, 204n4 (ch. 5); redwood-like, 151
constellations, 171, 192
continental drift, 23–25, 96, 108, 111–13, 154–55, 168, 190, 208n15
Cooksonia, 48, 57
cooperative brood care, 147, 163
coprolites, 82, 120, 205nn13–14
coral reefs, 38–40, 43, 53–54, 111
corals, 26; Devonian, 53–54, 56; first, 26; Petoskey, 53, 95; rugose, 38; Silurian, 38–39; tabulate, 38, 54
cordaites plants, 73, 82, 204n4 (ch. 5)
Corydalidae, pl. 9
Costa Rica, viii, ix
coumarins, 159
courtship, xii, 14, 44, 78, 80, 104, 125
crabs, 28, 30, 192
Cretaceous: continents, 155; Early, xiii, 15, 140, 154–56, 161; extinctions, 101, 182; forests, 155; India, 155; Late, xiii, 133, 157, 168, 172; Middle, 157; period, xii, 116, 152–69; plant communities, 166; plant toxins, 166; South America, 155
crickets, ix, 3, 11, 61, 95, 99–100, 118, 122
crinoids, 95
crochets, 158
crustaceans,
31, 34–35, 54
crypsis, 14, 101, 121–23, 123, 151, pl. 2–4, pl. 12
cryptic species, 8–9
cryptobiosis, 4
Cryptocercidae, 147
Curculionidae, 10
cuticles, 20, 26, 46, 49, 63, 79, 143, 145, 158
cyanobacteria, 26, 49
cyanogenic glycosides, 159
cycads, 95, 117, 120, 124, 129, 134, 156
damselflies, 98, 107, 117, 122, 176
Darwin, Charles, 165
debris: impact, 113, 169; organic, 67, 74, 107–8; volcanic, 117; woody, 175
decomposition, 74–75, 89–90, 108, 110, 140, 149, 205n5, 205n7
defenses: chemical, 84, 121, pl. 8, pl. 11; secondary, 121
defensive behavior, 39, 147, 179
dehydration, 4, 65
Dermaptera, 124
deserts, 3, 42, 65, 151
desiccation, 4, 65, 116, 140, 158
detritivores, 2, 90
development: delayed, 180; metamorphic, 93; slow, 100; wasp, 146; wing, 104
Devonian: coral reef ecosystems, 54, 69; Early, xi, 15, 48, 57, 175; fish diversity, 54; Gilboa forest, 57, 67; Late, 58, 67, 69, 75, 80; lungfish, 52; myriapods, 62; period, 17, 37, 42, 50–69, 96, 146, 175, 181; scorpions, 56, 62, 173; soils, 59, 64, 69; springtails, 63
digestive system, 26, 60, 102, 105, 143, 145
Dimetrodon, 93–94
dinosaurs, xiv, 18, 94, 96–97, 99, 116–17, 132–35, 154, 165–69, 172–73, 180, 191, 212n10; age of, 18; bird-sized, 118; carnivorous, 119–20, 133–35, 154; duck-billed, 154–55, 167, 169; feathered, 15, 116, 122, 129, 149–51, 167, 174, 176; first, 115, 118–20; flying, 81, 149–51; herds of, 134–35, 154; insectivorous, 120–22; Jurassic, xiii, 132–35, 149–51; long-necked, 120, 132–33; nest-marauding, 167; plant-feeding, 120–21, 166–67; tree-dwelling, 119, 149–50; Triassic, 118–27, 129, 150; warm-blooded, 111, 133
Diplodocus, 132, 151, 154, 209n2
diplopods, 46
Diplura, 65–68, 66, 175
Diptera, 11, 108–9, 111, 122
diseases, 148, 166–67, 183, 206n2
dispersal, 80, 104, 148
diversity, 181; arthropod, 29; dinosaur, 121; insect, 1–3, 5, 94, 121, 180–82; ordinal, 94, 206n3; plant, 192
DNA, 6–7, 48, 136, 191
dobsonflies, 118, 122, 124–25, pl. 9
dragonflies, 11, 79–81, 84–87, 99, 107; immature, 93