Book Read Free

The Blue Death

Page 11

by Dr. Robert D. Morris


  In keeping with Sutherland’s report, the board did not ignore the role of water in the epidemic. At their behest London’s finest microscopist, Arthur Hassall, examined almost one hundred water samples from throughout London, including the water of the Broad Street pump, under his compound lens. With the exception of water from a few natural springs and the city’s deepest wells, every sample teemed with microorganisms. The Broad Street pump appeared to have far less organic matter and far fewer microorganisms than most of the city’s water sources including comparable wells. Based on this finding, the authors of the report dismissed Snow’s indictment of the Broad Street pump.

  Snow, while disappointed, could not have been entirely surprised by the reports from Sutherland and the GBH. He understood the political strength and obstinate convictions of the sanitarians better than anyone in England. He might even have taken solace in their admission that drinking water might play a role in the spread of cholera. He did not know it, but the worst was yet to come.

  In May 1856 Dr. John Simon presented Benjamin Hall with an addendum to the General Board of Health’s report on the cholera epidemic of 1854. It was an examination of the water supply of South London. Simon had used the authority and resources of the GBH to obtain precise information on the number of customers served by each company in each subdistrict south of the Thames. Snow had no access to these critical numbers. Without them he could not calculate cholera mortality rates with certainty. Instead he could only estimate them and had published values he knew to be flawed. Simon, on the other hand, could duplicate Snow’s study with more accurate calculations of cholera mortality rates. Nonetheless Simon’s findings were similar to Snow’s. He determined that users of the S&V water died from cholera at three times the rate of those who consumed the far cleaner water of Lambeth.

  Simon concluded that this evidence was so strong that it would be “accepted as the final solution of any existing uncertainty as to the dangerousness of putrefiable drinking-water during visitations of epidemic cholera.” Reading the report one might have assumed that Simon was preparing to concede the validity of Snow’s theory. In his next breath, however, Simon shattered any such illusion. The results, suggested Simon, demonstrated that rotting organic matter in water could pose the same threat as rotting organic matter on land. Fermentation remained the common process that “brews poison.” Simon had claimed the territory first discovered by Snow and then firmly planted the flag of the sanitarians on its soil.

  Simon and his colleague were intent on maintaining the theoretical underpinnings of sanitary reform. Snow posed a threat to their science and had criticized their actions. Simon responded by denying not only Snow’s theory, but his very existence as well. Even the discussion of the Broad Street outbreak fails to mention Snow.

  One can forgive Simon’s dogged adherence to sanitarian thinking. One might even forgive his callous strategy of refusing to recognize Snow, but this was not his most grievous sin. In reproducing Snow’s study of South London water, Simon presents it as if it were entirely his own conception. Snow does not even merit a footnote.

  If the steady stream of minor slights and grave injustices angered or even discouraged the long-suffering Dr. Snow, he had never revealed his feelings in any public forum. But this sort of gross abuse must have wounded him. Simon had stolen Snow’s ideas, presented them as his own, and twisted the results to support the agenda of the sanitarians.

  Still Snow held his tongue. A colleague later recalled that “he possessed a temper which nothing could provoke.” Snow simply used the data that Simon had provided to update his own work. He published a paper in the Journal of Public Health and Sanitary Review that reanalyzed Simon’s data and showed that Simon, despite having more accurate data, had made an error in calculation. S&V customers had a cholera rate six times that of Lambeth customers, not three times, as Simon had concluded.

  Snow’s one contemporary biographer, Dr. Benjamin Richardson, once wrote, “The experiences of life, instead of entwining around him the vices of the world, had weaned him from the world.” Indeed Snow’s resilience in the face of the ignorant and relentless onslaught of his detractors seems superhuman.

  Richardson had come to know Snow through the meetings of the London Epidemiological Society, of which they were both members. He developed not just an admiration for Snow’s scientific ideas, but also a genuine affection for the man. When the moment came, Richardson led the charge in Snow’s defense.

  In October 1856, more than a year after the release of Simon’s report, Benjamin Richardson sat listening to a speech at the meeting of the British Medical Association in Birmingham. At the podium Dr. T. Bell Salter, a prominent London physician, was presenting a talk on the state of knowledge concerning epidemics. Salter went through the details of Simon’s study, giving full credit for the discovery of the link between water and cholera to Simon and the General Board of Health. Richardson listened attentively, waiting to hear the name of his friend and colleague. As Salter concluded, Richardson was horrified. Salter had perpetuated Simon’s crime by not even mentioning Dr. Snow.

  Richardson rose and stepped to the podium. He chose his words carefully. “I move,” he began, “that the cordial thanks of the meeting be given to Dr. Bell Salter for his learned address.” Such a motion was routine, but Richardson would not stop there.

  John Snow had just returned from his trip to Paris and was not at the meeting. Even if he had been present, he would probably not have risen in simple and direct self-defense. It was not his style. His friend, however, had watched him endure the indignities of the sanitarians long enough. Benjamin Richardson continued his motion:

  [T]he author of the paper has, I think, made an accidental omission in speaking of the Report of the Board of Health on the influence of the Southwark and Vauxhall water supply on cholera, in the last epidemic of that disease in London. It is well known to all who are acquainted with the subject in its fullness, that the discovery of the connection between water supply and cholera in no way belongs to the Board of Health, but exclusively to one of our own associates—Dr. John Snow.”

  As he spoke a rumble ran through the audience. With the mention of Snow’s name, the members of the British Medical Association erupted, clamoring, “Hear, hear!” They, too, had heard enough.

  Richardson went on, “The Board of Health has, indeed, up to a late period, ignored, to a great extent, this important question and it was not until Dr. Snow had, with unwearied industry, with that true genius for observation which so characterizes his labours, and at great pecuniary cost, placed the question beyond dispute.”

  Then he cut to the heart of Simon’s deceit. “The report was nothing more than a corroboration of Dr. Snow’s important and original views; and I think it by no means fair that, while the views of other men were referred to, the claims of our associate were entirely overlooked.” The audience again roared its agreement, “Hear, hear!”

  Having said his piece, Richardson apologized for his break from decorum. “I think it is but honest to put the meeting fully in possession of these facts and regret that I should have been obliged to digress from the simple business of proposing the resolution placed in my hands.”

  As the full meaning of Richardson’s rebuke of Simon and the GBH rippled through the audience, a figure rose from its midst. Dr. Edwin Lankester had sat on the Vestry of St. James Parish when Snow had pleaded with them to close the Broad Street pump. At the time, even though he agreed to the closure of the pump, Lankester had found Snow’s arguments unconvincing. But this time he rose in Snow’s defense. “I second the motion,” he said.

  A few moments later, a third figure rose from his chair. It was another member of the British medical elite, Dr. William Budd. Budd had written his own monograph on cholera in which he suggested that microscopic fungus in water could spread the disease if they were inhaled. He had published his ideas shortly after Snow’s first monograph. Budd had been gracious with respect to Snow’s primacy then and rem
ained so. “Certainly,” he offered, “in regard to the spread of cholera by water, [the GBH] has only declared an opinion when the question had been satisfactorily proved by others and I regret exceedingly to see that Dr. Snow’s great labours had been so completely unrecognized.”

  At that point Richardson put the motion to a vote. When he asked for supporters, a chorus of affirmation went up. When he asked for dissenters, the audience was silent. Snow’s persistence and quiet wisdom had won the day. In the community of medicine, the one Snow cared about most, the tide had begun to turn in his direction.

  The tenth day of June 1858 found John Snow in his office on Sackville Street, assembling another monograph. This was a summation of his work on anesthesia. Cholera was, for the moment, gone from England and the debate about its cause had receded with the disease. Snow had not been idle.

  In the years since the cholera epidemic, he had continued to move forward with a broad array of research projects. He had recently proposed a new theory on the nature of cancer, offering the prescient notion that it was derived from tissues within the body due to the influence of factors in the environment and implicating nutrition as a primary cause. A year earlier he had once again administered chloroform to Queen Victoria, this time for the birth of Princess Beatrice. Just a day earlier, he had met with a group of colleagues to plan a study on the nature and cause of the sounds of the heart as revealed by recent improvements in the stethoscope. In a moment when Snow seemed on the verge of extending the reach of his brilliance into new fields of medicine, tragedy struck.

  He had just dipped his pen in ink and scratched the word exit when he slumped in his chair. A stroke held him in its terrifying grip, and he was unable to move. The stroke was relatively mild. By the next day, he had recovered enough to continue work on his monograph, and it seemed, for a moment, that his remarkable career might continue.

  Two days later, however, his housekeeper entered his office to find him on the floor, unable to move his left arm and leg. His face was contorted, with his mouth drawn to one side. This time the paralysis persisted. Snow remained in bed for several days, lucid, but unable to move half of his body. On June 16, the life and career of John Snow ended, perhaps as the result of a third stroke. He was forty-five years old.

  Even in his death, his detractors seemed determined to diminish him. The Lancet offered the following, two-sentence obituary:

  Dr. John Snow: This well-known physician died at noon on the 16th instant at his house on Sackville Street from an attack of apoplexy. His researches on chloroform and other anaesthetics were appreciated by the profession.

  Fainter praise rarely has been given.

  If he had lived another twenty years, we might well find his name next to Darwin and Pasteur as one of the greatest scientists of his age. But this cruel and abrupt end to his life, together with the disappearance of any records of his personal life, has helped to relegate him to the second tier of scientific history.

  He did, however, leave us with an idea. The idea that organisms in drinking water could cause disease would continue to be controversial for more than twenty years after Snow’s death. Some never accepted his ideas. In 1894 William Chadwick went to his grave, resolute in his sanitarian beliefs.

  The problems with London’s water supply as identified by John Snow would not begin to go away until the wholesale dumping of sewage into the Thames stopped. All the evidence Snow produced did little to convince members of Parliament to take the costly steps needed to improve the quality of the water in the river. Then, in the months after Snow’s death, nature forced the issue.

  The summer of 1858 was long, hot, and dry. The end of July found the parched Thames struggling to reach the sea. The shallow remnants of the river ebbed and flowed with the tide, offering no escape to the steady influx of sewage. The Thames became a vast, sloshing cesspool. As the August sun baked the river, it gave off a stench so overpowering that it became known as the Great Stink, perhaps the only time in history that a smell earned itself a proper name.

  That summer members of Parliament retreated from their usual chamber to remote meeting rooms as far as possible from the river’s bank. Breathing through scented handkerchiefs, they voted to approve the construction of a vast set of interceptor pipes to carry London’s sewage eighteen miles downstream, far from the intakes of the water companies. Within a year construction began on what was then the largest engineering project in British history. Once it was completed, cholera left England, never to return. Still, the debate over cholera’s cause and its link to drinking water would not subside until the deadly bacteria had been found.

  Robert Koch

  Vibrio cholerae

  Cryptosporidium emerging from oocysts in the small intestine

  PART II

  Thirsty Cities and Dirty Water

  “…the good feeling was as universal and exuberant as though the Lake Tunnel had flooded the city with champagne and oysters, instead of pure water without little fish.”

  THE CHICAGO TRIBUNE, ON MARCH 26, 1867, UPON THE INAUGURATION OF A NEW WATER SUPPLY.

  7

  THE RACE TO CHOLERA

  T he footsteps of three men echoed up the stairwell of the Hôpital Larboisière. They climbed steadily, past the wards of one of Paris’s newest and finest medical facilities. One of them, a short man in a black suit with a crisp bow tie and a trim beard, led the group as they entered the attic. The men formed a select team, sent by the French government to find a killer. Their leader that day, the youngest of the three and the group’s only nonphysician, was a chemist by the name of Louis Pasteur.

  At forty-three, Pasteur had just completed a series of studies for France’s food and beverage industry that had laid the foundation for an entirely new field of science that would come to be known as microbiology. In that attic Pasteur had been conducting his latest study. He led his colleagues to a ventilation shaft that rose from the wards below. Peering through his pince-nez spectacles, he bent down and attached a glass tube to an opening in the shaft. The tube ran through a mixture of refrigerants to a small hand-powered fan. Cooling the air would cause water vapor to condense, which in turn would cause airborne particles and microbes to collect along the sides of the tube. As he cranked, the fan pulled air through the tube from the ward below where, one after another, patients were dying of cholera.

  It was October 1865 and the dreaded disease had once again broken loose on the streets of Paris. The minister of health had sent the finest team available in search of cholera’s cause. The stakes were high. The epidemic was slaughtering some two hundred Parisians with every passing day. As they searched, the deadly waters of the Seine ran through the plumbing of Paris. A new water supply was almost a decade away.

  When he received the minister’s call, Pasteur was immersed in a study of diseases in silkworms. He had never studied human disease before. But Pasteur did not shy from the challenge. In addition to the samples from the ventilation shaft, he sealed flasks of air taken in spots throughout the hospital. The three scientists also collected blood from several cholera patients before returning to their laboratory. They even gathered dust from the floors. Somewhere in these samples they hoped they might find the cause of the deadly outbreak. The simple fact that they were analyzing air and blood in search of cholera’s spark, however, testifies to the level of heresy present in John Snow’s original work on cholera, published sixteen years earlier. Three of the finest scientists in France were looking for the organism in the two places Snow had insisted they would not find it.

  They of course failed to find cholera in the air that rose from the cholera ward, but one can forgive Pasteur’s obsession with the air as a vector for transmitting disease. Among the most remarkable findings of his earlier research was the presence of bacteria and mold in the air wherever he looked, from the brine pits of Arc-et-Senans to the glaciers of Mont Blanc. Pasteur, however, had never studied microbes in water. The culprit responsible for some nine thousand deaths in France would
leave the country with the secret of its identity intact.

  In the eighteen years that passed before Pasteur again set out to find the cause of cholera, he led his growing band of apprentices through what he called “the unexplored country,” a land that he had in large measure discovered. Soon others began to probe this uncharted territory. In time Pasteur found himself on a collision course with the other founder of modern microbiology, a young German physician by the name of Robert Koch. The conflict began as a war of words but became a race to find the cause of cholera, a contest that would leave a promising young scientist dead in the Egyptian desert before ending in a water tank north of Calcutta.

  In the fall of 1865, as Pasteur struggled to unravel the cause of cholera, a young Robert Koch sat down to eat a plate of butter. In the city of Göttingen, in the north of Germany, cholera was far from his thoughts. He pulled himself up to the table and began to consume this most unusual meal. Stuffing spoonful after spoonful of butter into his mouth, he did not stop until he had consumed half a pound. At the time the twenty-two-year-old medical student seemed like an unlikely competitor to the great French scientist, but this bizarre meal was the beginning of Robert Koch’s research career. He was studying the metabolism of dietary fat. As soon as he had finished dining on butter, he began collecting and analyzing his own urine.

  By the time he finished medical school Koch had already written two research papers. In addition to his work on diet and urine chemistry, he completed an exquisitely detailed dissection of the nerves of the uterus, which he wrote up, illustrated with meticulous drawings, and emblazoned with his personal motto, “Nunquam otiosus” (never idle). But Koch had not intended to become a researcher and would not write another scientific paper for more than ten years.

 

‹ Prev