THE STORY OF STUFF
Page 13
Next, the aluminum oxide is transported to smelters, and this is where the truly gross aspects of aluminum production kick in. There’s a reason scientists call aluminum “congealed energy”: making one aluminum can takes energy equivalent to one-quarter of the can’s volume in gasoline.80 Aluminum smelting requires more energy than any other metal processing on earth.81
At the smelter, the aluminum oxide crystals are dissolved in a bath of something called cryolite (sodium aluminum fluoride) and zapped with enormous jolts of electricity (100,000 to 150,000 amps), which strips the oxygen from the aluminum. This process also breaks off bits of the fluorine from the cryolite, which escapes the smelter in the form of perfluorocarbons (PFCs)—these are the most noxious of greenhouse gases, trapping thousands of times more heat than carbon dioxide. What remains is pure aluminum, which gets poured into molds and cooled into bars. Then these bars are shipped elsewhere, rolled into super-thin sheets, and shipped to another factory that punches and forms those sheets into cans. They are washed, dried, primed, painted with the brand and product information, lacquered, sprayed inside with a noncorrosive coating, and finally filled with a beverage.82
After all that, the can’s contents are consumed in a matter of minutes, and the can is trashed in a matter of seconds. “I don’t understand my countrymen. They import this product, drink the garbage, and then throw away the valuable resource,” says Puerto Rican activist Juan Rosario, bemoaning the high levels of soda consumption and low level of recycling on his island.83
Globally, about a third of aluminum smelters use coal-generated electricity. In addition to carbon dioxide emissions, this pollutes our air with tons of carbon monoxide (the gas that’ll kill you if you leave your car running in a closed space), sulfur dioxide, and nitrogen dioxide.84
Most of the smelters in the United States and other developed countries have been shut down, and those that are still operational probably won’t be up and running much longer. Since 20 to 30 percent of aluminum’s total production cost is electricity, while the transportation costs from mines to refineries to smelters constitutes less than 1 percent,85 it’s common to ship the raw materials around the world to take advantage of the cheapest power. Rio Tinto, a huge Australian mining concern, has plans for a new smelter in Abu Dhabi.86 Why there? Because now that Australia’s coming on board with international carbon emissions policies (the Kyoto Protocol’s follow-up), that old coal-fired plant will become too expensive, while Abu Dhabi will remain a carbon free-for-all zone.
Worldwide, smelters in rich countries where energy is becoming more expensive are being abandoned in favor of building new ones (plus the power plants needed to fuel them, usually dam projects) in farther-flung places like Mozambique, Chile, Iceland, and along the Amazon River in Brazil.87 Construction of the dams, roads, and other necessary infrastructure (plus the waste and emissions once the plants are up and running) seriously threatens lives—human, animal, and vegetable—and the climate. For example, a planned site in Iceland would flood a pristine area that contains more than one hundred breathtaking waterfalls and habitat for reindeer and other vulnerable wildlife.88 Glenn Switkes, the Amazon Program Director of International Rivers, an organization dedicated to protecting rivers around the world, explains that aluminum companies are the principle force behind the Brazilian government’s plans to dam the major rivers of the Amazon: “Aluminum companies are relocating to the tropics because governments in developing countries are providing them with subsidized hydroelectricity. These dams have irreversible impacts on biodiversity, and displace thousands of riverbank dwellers and indigenous peoples.”89
What’s that? You’re waving the white flag of recycling? Well, the fact is, all the attention paid to recycling in the past few decades has given Americans an inflated idea of how much aluminum is being recycled. That, and some clever manipulation of the numbers by the aluminum industry.*
While it’s true that cans are 100 percent recyclable, aluminum recycling in the United States has been on the decline for decades. We’re recycling about 45 percent of cans today, down from 54.5 percent in 2000 and the peak rate of 65 percent in 1992.90 In part this is because Americans are spending ever more time commuting and consuming beverages on the go, while there are few recycling bins in places away from home like the mall, the movie theater, the airport, etc. It’s also because we still only have bottle bills, which place a 2.5-to 10-cent deposit on each can and bottle, in a mere ten states across the country.91 In Brazil, meanwhile, there’s an impressive 87 percent recycling rate for beverage containers because many people rely on the income from collecting them.92 Given rising levels of unemployment stateside, you’d think we might follow Brazil’s example.
As the Container Recycling Institute points out, widespread subsidies for virgin aluminum also detract from recycling: “Because of long-term, cut-rate energy contracts, below-market water rates, the easy acquisition of government lands for mining, and a myriad of tax breaks and infrastructural assistance, aluminum companies have perhaps been less vulnerable to global economic forces than some other primary industries. [This has] enabled the world aluminum primary industry to expand capacity ahead of demand. As long as excess primary aluminum production capacity exists on the global market, and as long as the cost of making virgin ingot remains low, scrap prices will remain suppressed.”93
In fact, it’s estimated that more than a trillion aluminum cans have been trashed in landfills since 1972, when records started being kept. If those cans were dug up, they’d be worth about $21 billion in today’s scrap prices.94 In 2004 alone, more than 800,000 tons of cans were landfilled in the United States (and 300,000 tons in the rest of the world).95 As a Worldwatch report pointed out, “that’s like five smelters pouring their entire annual output—a million tons of metal—straight into a hole in the ground. Had those cans been recycled, 16 billion kilowatt hours could have been saved—enough electricity for more than two million European homes for a year.”96
I saw a great depiction of the irrationality of aluminum beverage cans when I was working on waste issues in Budapest in 2007. HuMuSz, an organization there that raises awareness about waste, had made a series of short, entertaining films that play before feature films in Hungarian movie theaters. My favorite film took place in a WALL-E-like, totally trashed planet Earth of the future, where aliens arrive to conduct research. They find one remaining human being and grill him for answers about the incredibly valuable and widely dispersed pieces of aluminum strewn about the planet, convinced these were used for communications, military, or medical purposes. When the human replies that they were for singleuse servings of sugary, carbonated drinks, the aliens berate him for lying: “No one would be so stupid, so irrational to use such a highly valuable, energy-intensive metal to hold a simple beverage!” I’m with the aliens on this one.
For once, the solution is incredibly straightforward. If we cut out the absurd, frivolous use of aluminum as a container for our beverages, we can put the tons of aluminum already in circulation into Stuff that makes sense, like to replace some steel to lighten up our modes of transportation, especially while these are still running on CO2-spewing fossil fuels. And instead of disposable cans, we could be drinking out of refillable bottles, which will take a little advance planning but will cut air and water pollution, energy use, and the production of CO2 and waste.
PVC, aka Pernicious Vile Compound
Plastic is pretty much universally recognized as a problem these days, from the oil needed to produce it to the virtually immortal debris it leaves floating in our oceans. But not all plastics are created equal; some are more problematic than others. PVC plastic (polyvinyl chloride), commonly referred to as vinyl, is the most hazardous plastic at all stages of its life: from its production in the factory; to its use in our homes, schools, hospitals, and offices; to its disposal in our landfills or, worst of all, our incinerators. It’s also a cheap and versatile plastic, which are two reasons it continues to be widely used in spite of i
ts negative environmental health impacts.
PVC has a variety of forms and textures and shows up in all kinds of places: fake leather shoes and purses, waterproof raincoats and boots, shiny bibs and aprons and tablecloths and shower curtains; garden furniture and hoses; food containers and wrapping; plastic-coated dish drying racks; vinyl siding and windows and pipes. It’s in medical supplies (tubing) and office supplies (binders). And it’s all around our kids in their toys and clothes.
Again we see toxic chlorine, which shows up in much of our Stuff. During PVC’s multistage production, chlorine gas is used to produce ethylene dichloride (EDC), which is converted into vinyl chloride monomer (VCM), which is converted into the PVC.97 This is a horrifically poisonous list of ingredients. Many studies have documented high rates of diseases among workers in vinyl chloride production facilities, including liver cancer, brain cancer, lung cancer, lymphomas, leukemia, and liver cirrhosis.98
PVC’s production process also releases a lot of toxic pollution into the environment, including dioxins. As I’ve mentioned, dioxins are a group of noxious chemicals that persist in the environment, travel great distances, build up in the food chain, and then cause cancer, as well as harm the immune and reproductive systems.
Additionally, because in its pure form PVC is actually a brittle plastic with limited use, further chemicals, or additives, need to be mixed in to make it pliable and expand its uses. These include neurotoxic heavy metals, like mercury and lead, and synthetic chemicals, like phthalates, which are known to cause reproductive disorders and are suspected to cause cancer.99 Since most of these additives don’t actually bond to the PVC at the molecular level, they slowly leak out, a process called leaching or off-gassing. Sometimes quickly, sometimes slowly, these additives seep out of the PVC plastic, migrating from toys into our children, from packaging into our food, and from our shower curtains into the air we breathe.
In 2008, the Center for Health, Environment and Justice (CHEJ) released a study testing toxic chemicals that off-gassed from a new PVC shower curtain. CHEJ’s tests found 108 different volatile compounds released from the shower curtain into the air over twenty-eight days. The level of these compounds was sixteen times in excess of the indoor air quality levels recommended by the U.S. Green Building Council.100
But before you start a massive PVC purge of your surroundings, consider the last part of PVC’s miserable lifecycle: its disposal. We Americans toss out up to 7 billion tons of it per year, with 2 to 4 billion tons of that going to landfills.101 When PVC winds up in a landfill, it leaches its toxic additives into the soil, water, and air.
Dumping PVC is bad, but burning is even worse, since burning PVC produces the super toxin dioxin.102 Despite this fact, much burning of PVC isn’t accidental. It generally gets burned in one of four places: backyard or open burning, medical waste incinerators, municipal waste incinerators, or copper smelters (often scrap wire is coated in PVC, so burning to reclaim the copper inevitably also burns more PVC103). Also, as more PVC is used in construction materials, building fires have become a new source of dioxin and other toxic emissions. When PVC building materials heat up in fires, they release toxic hydrogen chloride gas or hydrochloric acid, which is deadly if inhaled by firefighters and others trapped inside.104
And what about recycling? There’s that white flag again, eager to quell our concerns about using too much Stuff and making too much waste. With PVC, recycling simply isn’t a solution: it just adds to the problem, because recycling a poison perpetuates the hazard and exposes yet another round of workers and future consumers. The only answer is to stop making new PVC and get the existing PVC out of circulation.
So what to do with the PVC you do have? First off, don’t beat yourself up if it’s around you and your family: even in my household, despite my vigilance, insidious PVC infiltrates. Sometimes it arrives in the form of small toys in goodie bags my daughter brings home from birthday parties. Occasionally I get something, like the new extension cord I just bought, that I didn’t realize was PVC until I opened the package and its stench filled up the garage. Once I ordered a rain jacket for my daughter; again, although the online description didn’t say it was PVC, its odor did. So what to do? In all of these cases, I pack up the product and send it back to the manufacturer with a letter explaining why the product is unacceptable, giving them the rundown on PVC, and demanding a refund. (There’s a sample letter in appendix 3 you are welcome to copy). If I can’t identify the manufacturer, the offending product goes into a box in my garage that, when full, I mail off to the Vinyl Institute, an industry trade group in D.C. (Their address is also in appendix 3.) Since these guys make big bucks to defend the producers of PVC, I figure they can deal with it. You could also invite your neighbors to send theirs back with yours, and if you get enough people to participate, invite a local TV, radio, or newspaper reporter. The more we can raise awareness about how unacceptable PVC is, the better.
As for avoiding future PVC purchases, this material isn’t too hard to identify. The two easiest clues are the label and the smell. If you turn a plastic container over and find a number 3 inside the little chasing-arrows recycling logo, put it back on the shelf.
If you can, make a quick call to the customer service number on the container, or send an e-mail or letter when you get home, telling the company you’re not buying their Stuff as long as it’s packaged in the most toxic plastic on the planet. Some containers don’t display the number but say “vinyl” or “PVC” or may even have just a little “V.” Look carefully. It’s worth the extra minute to make sure you’re not bringing PVC home.
The other way to identify PVC—often from yards away—is the smell. You know that smell of a new shower curtain, a new car, or the shoe section at a Target store? That is PVC. Or more accurately, it’s some of the additive chemicals that are off-gassing. At a Halloween-time birthday party my daughter attended recently, plastic vampire fangs were handed out as favors. As soon as she got a whiff of them, she started running around the party grabbing them from the other kids, yelling, “Don’t put them in your mouth!” In other words, even your kids can be on guard against it. If you think this is a sad situation to put our kids in, you’re right. It stinks—both in terms of odor and in terms of whoever made the decision to use this supertoxic material when safer alternatives exist.
It’s more of a challenge to figure out how to get all the PVC pipes out of our houses, but we can easily eliminate the packaging, plastic bottles, and containers, as well as all the junky vinyl Stuff PVC is so often used for, like plasticky backpacks or inflatable kiddie pools. There are safe, cost-effective alternatives to so much PVC crap! In my bathroom, I have a cotton shower curtain that I can launder. In my kitchen, I use sturdy reusable containers instead of ever letting my family’s food touch that foul plastic wrap.
Unfortunately, other choices are harder to make. For example, when I wanted to replace three old windows in my house with more energy efficient ones, I found that the price of PVC window frames is about half that of traditional wood. Knowing about PVC’s lifecycle, I know that the true costs of producing those PVC windows include nearly insurmountable health and safety impacts, while wood window frames can be made from sustainably harvested or salvaged wood and can be painted without heavy metals or other toxics. The PVC windows just seem cheaper because someone else (the workers, the fence-line communities, the environment) is paying the real costs. My current solution is to just make do with some less-than-perfect-looking window frames for a few more years and to install far less expensive insulating curtains instead.
As more people learn about the dangers of PVC and refuse to buy it, some companies are beginning to respond. Organized consumer-citizens have pressured Bath & Body Works, Honda, IKEA, Johnson & Johnson, Microsoft, Nike, Toyota, Victoria’s Secret, and even Wal-Mart to commit to phasing out PVC at different levels. While I am glad every time these organizers add another store to their victory list, I don’t think we can solve this problem going stor
e by store, forcing each one to stop using PVC. We simply don’t have time. We need a combination of leadership from within the business community, strong citizen watchdog groups, and government action to stop PVC at its source.
Sweden, Spain, and Germany have all restricted PVC in some locations or uses. In Spain, more than 60 cities have been declared PVC free, and 274 communities in Germany have enacted restrictions against PVC.105 Many government actions have focused on the specific concern about endocrine-disrupting phthalates in PVC toys, in response to which some restrictions or bans have been adopted by the European Union, Japan, Mexico, and elsewhere.106 Meanwhile, the United States has not even considered a national ban, opting instead for a voluntary agreement with manufacturers to remove two phthalates from PVC rattles, teethers, pacifiers, and baby bottle nipples.107
Can you detect the problems with this approach? First, every parent knows that kids don’t limit their playthings to items labeled as “toys.” Second, we can’t limit our concerns to children: that leaves the rest of the population exposed to phthalates as well as all the other toxins in PVC. The only solution is to go 100 percent PVC free, as quickly as possible.
Key Questions About Production
By investigating just these five items, we start to get a sense of how production plays out. Even with Stuff that seems simple, there are a mind-blowing number of ingredients, machines, by-products, not to mention impacts on the environment and human health. Imagine what goes into making your car or home.
Therefore, before buying anything, I’ve developed the habit of asking myself: Is all the effort to extract ingredients for and produce this thing, combined with my hours of work to pay for it, worth it? Can I borrow one from a friend? Deborah loaned me a baking pan for last Thanksgiving dinner. Andrea loaned me her pickup truck to move furniture. Nick loaned me his ladder. I loaned Jane my extra-warm down coat when she went back east last January. The benefits to borrowing and lending aren’t just environmental, they’re social as well. It’s fun, and it builds community.