Book Read Free

Kicking the Sacred Cow

Page 20

by James P. Hogan


  The scale and nature of the devastation is consistent with a gigantic tidal surge away from the equator, being stopped at barriers such as the Himalaya chain and the Alps, but elsewhere funneling through the northern Atlantic and Pacific inlets to the Arctic Basin and then rebounding in a backwash rolling southward across the Asian and North American continents. In many places the animal and plant debris are of all types from all regions, marine and land forms, from tropical and temperate climates, all jumbled and heaped up together. The Siwalik Hills on the southern edge of the Himalayas consist of sedimentary deposits 2,000 to 3,000 feet high and extending for several hundred miles, abounding with fossil beds of so many and so varied species that the animal world of today looks impoverished by comparison. Thirteen hundred miles away, in central Burma, the deposits cut by the Irrawaddy river reach 10,000 feet and contain a comparable variety, along with hundreds of thousands of entire trunks of silicified trees. Yet, as also happens in other places, the beds are separated by huge thicknesses of sediment—4,000 feet in the case of the Irrawaddy—that contain no fossils or trace of any organic material at all, suggesting the sudden halting of colossal volumes of water.

  Earthmoving and Excavation

  Rapidly moving water can move amazingly heavy objects. Erratic rocks and boulders found hundreds of miles from their places of origin have usually been attributed to transportation by glaciers or ice sheets. But they occur widely across parts of Siberia where there are no high grounds to impart motion to ice, and in places that were never covered by ice.

  The evidence Velikovsky presents is of precisely the kind that the events proposed in Worlds in Collision would be expected to leave, such as of meteorite storms, pole shifts, abrupt climate changes, alterations of sea level, and increased tectonic activity. Mountain uplifts and other formations show indications of being younger than conventional geology maintains. The Columbia Plateau consists of solidified lava sheets covering two hundred thousand square miles of Washington, Oregon, and Idaho. The Snake River at Seven Devils Canyon has cut more than three thousand feet deep and not reached the bottom of them. Tens of thousands of elliptical craters, many now flooded to form lakes, occur all along the coastal areas from New Jersey to northeast Florida, but especially in the Carolinas. They all exhibit a parallel alignment from northwest to southeast, and many have raised rims at the southern end, suggestive of scars from an intense meteorite shower coming down at a grazing angle. Similar patterns occur at other parts of both hemispheres. Volcanic and earthquake activity has declined significantly even since Roman times. In the Andes, ruins of fishing villages and ports are found 12,000 feet above sea level. What were once cultivated agricultural terraces today disappear under the snow line.

  Of course, much of this clashes with the orthodox dating system. In his usual fashion, Velikovsky cares little for theory and sides with the evidence, questioning the assumptions that the conventional dating system rests on. It was more a product of materialism's fight with religion than an empirical construct, he contends, manufactured to provide the long time scales that Lyell and Darwin needed. Paralleling much of what we said earlier in this book, he was skeptical that natural selection had the ability to do what was claimed of it and offered evidence that biological change occurred in sudden epochs of repopulation by radically new designs, triggered by the occurrence of global-scale catastrophes. Needless to say, this didn't earn him many friends in that department either.

  Orthodoxy in Confusion

  Embarrassing Confirmations

  The reactions after release of Earth in Upheaval were more restrained, possibly because some were beginning to feel that things had gone too far for the good of the professional image the first time. Others no doubt hoped that if they ignored Velikovsky he might just go away. But a big part of the reason could have been that an embarrassing number of his predictions were beginning to be shown as correct.

  When Worlds in Collision was published, four Yale University professors had collaborated in preparing a rebuttal in the American Journal of Science, where one of them ridiculed the suggestion that the Mesoamerican civilization appeared to be much older than conventional history allowed. Five years later, the National Geographical Society announced: "Atomic science has proved the ancient civilizations of Mexico to be some 1,000 years older than had been believed." 97 The chief of the Bureau of American Ethnology at the Smithsonian Institution declared this to be the most important archeological discovery in recent history.

  Another of the Yale critics scorned Velikovsky's suggestion that petroleum might have a cosmic origin. Two years later, in 1952, P. V. Smith reported in Science (October 24) the "surprising fact" that oil from recently deposited sediments along the Gulf of Mexico could be only thousands of years old. Hydrocarbons were subsequently found in the composition of some types of meteorites. A smallish carbonaceous chondrite asteroid—say, around ten kilometers in diameter—is estimated to contain a trillion tons of them. 98 In 1960, Professor A. T. Wilson of Victoria University in Wellington, New Zealand, produced high-molecular-weight hydrocarbons by electric discharges in Jupiter-like gases and suggested that terrestrial petroleum might have come from elsewhere—a theme that others have taken up since. 99 Both he and Professor W. Libby, chemist at the University of California, speculated that oil might exist on the Moon. By the early 1960s, neon and argon were repeatedly being found in meteorites, too.

  In April of the same year as Earth in Upheaval was published, 1955, scientists from the Carnegie Institution startled their audience at a meeting of the American Astronomical Society by announcing the chance detection of unexpected radio emanations from Jupiter, which they had recorded for several weeks before identifying the source. When a Doubleday editor wrote, calling attention to Velikovsky's anticipating just such a finding, one of them replied that even Velikovsky was entitled to a "near miss once in a while." The full extent of the radiation belt encompassing Jupiter, a hundred trillion times more powerful than Earth's, was established in 1960.

  Dr. Harry Hess, head of the Department of Geology at Princeton University, who had always been sympathetic toward Velikovsky's theories, submitted a memorandum to the U.S. National Committee in December 1956, proposing as part of the planned agenda for the International Geophysical Year a search for the extended region of terrestrial magnetic influence as Velikovsky had suggested. The Van Allen Belts were discovered in 1958 and featured as one of the high points of the program. In 1960 the Pioneer V space probe was launched, and after it had been in solar orbit for six weeks NASA called a press conference to announce that "In one exciting week, man has learned more about the near reaches of space that surround the earth than the sum of his knowledge over the last 50 years. . . . [A] fantastic amount of cosmic traffic (hot gaseous clouds, deadly rays, bands of electricity) rushes by at high speed, circles, crisscrosses, and collides." 100 The tail of the Earth's magnetosphere was later measured as extending beyond the orbit of the Moon.

  There was also news from Venus. As late as 1959, many astronomers still maintained that because of the great reflectivity of its cloud cover its surface temperature would be little different from Earth's, despite its closer orbit to the Sun. However, in April 1961, radio astronomers announced that the figure had to be at least 600ºF. In 1963, after analysis of data from the Mariner 2 probe, the measured value turned out to be 800ºF. At about the same time, radiometric measurements by the U.S. Naval Observatory and the Goldstone Tracking Station in California showed Venus to have a very slow retrograde rotation, making it unique among the planets and suggesting something unusual about its history. Some astronomers wondered if it might have been created separately from the others.

  Further results from Mariner 2 were interpreted as indicating atmospheric condensation and polymerization into heavy molecules at temperatures around 200ºF, leading to the conclusion that Venus's atmosphere must contain heavy hydrocarbons and possibly more complex organic compounds. Lloyd Motz of Columbia, who had supported Velikovsky before, a
long with Princeton physicist V. Bargmann, wrote a joint letter to Science drawing attention to Velikovsky's priority in predicting these seemingly unrelated facts about the Solar System and urged that his whole thesis be objectively reexamined. When the letter was published, Velikovsky submitted a paper showing that the points brought out in the letter were just a few of many his books raised, that had been supported by independent research. The paper was returned unread. Instead, Science published a facetious letter from a reader stating that "the accidental presence of one or two good apples does not redeem a spoiled barrelful." Or a barrelful of sour grapes, maybe?

  More Electrical Heresies: Charges and Counter-Charges

  The theoretical front was seeing some interesting developments also. One of Velikovsky's suggestions that had been greeted with derision was that electromagnetic forces might play a part in celestial dynamics as well as gravity, and that astronomical bodies could be affected by acquiring electrical charge during their encounters. At a meeting of the American Philosophical Society in 1952, Cecilia Payne-Gaposchkin presented a paper taking Velikovsky to task on selected biblical quotations, but which was itself riddled with misrepresentations. 101 Velikovsky, who was in the audience, came forward to give a rebuttal and was warmly received. But when he requested that his remarks be reproduced along with Gaposchkin's in the society's Proceedings, he was refused.

  Appended to Gaposchkin's paper, however, was a "quantitative refutation of Velikovsky's wild hypotheses" by Donald H. Menzel, also of Harvard. To show how preposterous Velikovsky's hypothesis was, Menzel demonstrated that to contribute ten percent of its gravitational attraction on the Earth, the Sun would need a charge of 1019 volts, whereas he calculated it was incapable or retaining anything greater than 1800 volts. (He also showed that the sudden acquisition of such a charge would involve a supply of more energy than the Sun radiates in a thousand years, which was neither here nor there since Velikovsky had said nothing about its being acquired suddenly.)

  Then in 1960, Professor V. A. Bailey, professor of physics at the University of Sydney, Australia, who was not familiar with Velikovsky's work, announced that the magnitudes of five different known astronomical phenomena could be explained by the single hypothesis that a star like the Sun carries a net negative charge. Bailey's figures for making this work gave a surface potential of 1019 volts—precisely that which Menzel had used to show how wacky Velikovsky was. Menzel wrote to Bailey pointing out what he perceived as an error and asked that Bailey revoke his theory since it wasn't helping the American scientists' campaign to discredit Velikovsky. Bailey took exception to the suggestion and in turn uncovered an arithmetical slip in Menzel's calculations that invalidated Menzel's whole argument. Menzel duly published a correction, but without acknowledging that it demolished his widely publicized anti-Velikovsky claim.

  With regard to the radio emissions from Jupiter, Menzel wrote that since scientists generally didn't accept the theory of Worlds in Collision, "any seeming verification of Velikovsky's predictions is pure chance." 102 He dismissed the prediction of the high temperature of Venus on the grounds that Velikovsky hadn't supplied a figure but said only that it would be hot, which was a relative term—liquid air, for example, being "hot" relative to liquid helium.

  Velikovsky's suggestion of electrical interaction as an agency for arresting the motion of the Earth and circularizing the orbit of Venus had been scoffed at by the eminences because they insisted that the bodies of the Solar System were not charged and the space between them electromagnetically inert. Both these assertions had been shown to be wrong. 1960 was also the year when Professor André Danjon, director of the Paris Observatory, reported to l'Académie des Sciences that following an unusually large solar flare, the length of the day suddenly increased by 0.85 milliseconds, which he ascribed to electromagnetic forces induced by the flare. Thereafter, as the charge acquired by the Earth leaked away into the conductive medium afforded by the recently discovered solar wind, the Earth's rotation recovered at the rate of 3.7 microseconds every 24 hours. 103

  We saw earlier how fiercely the entrenched priesthood resisted Hans Alfvén's theories about space being an electrically active medium—from one of the club, who later received a Nobel Prize for his work in celestial electrodynamics. It isn't difficult to imagine how they must have felt about being upstaged by a scholar in ancient history and classical languages, who was not only asking questions that they themselves should have been asking long before, but moving in on the turf and coming up with some good answers.

  A New View of Planets: Violent Origins; Rapid Change

  Needless to say, the proposal of Venus erupting out of Jupiter, and that the Greeks hadn't imagined it or made it all up, sent the Establishment into a frenzy. Everybody knew that all the planets had been formed at the same time billions of years ago. The two prevalent mechanisms doing the rounds in the fifties were the tidal theory, going back to Laplace, in which the planets had condensed from a blob pulled off the Sun by a close-passing star, and the more recent model of accretion from a contracting nebular disk.

  However, in 1960 the president of the Royal Astronomical Society in Britain, W. H. McCrea, rocked the applecart with a theoretical analysis showing that neither of these models would work, since planetary formation within the orbit of Jupiter by either process would be disrupted by its tidal effects. 104 The following year, the British cosmologist Raymond. A. Lyttleton concluded from a fluid-dynamic study of Jupiter's core that an object of its size and estimated accretion rate, rotating at such a speed, would periodically become unstable and assume the form of an ovoid rotating about its short axis. The ovoid would elongate into an asymmetrical dumbbell and eventually fission to shed excess mass. Most of this ejected amount—up to 10 percent the mass of the original body—would be expelled from the Solar System. But lesser drops torn out in the process could be captured by the Sun and have formed the inner planets. Thus the only primordial members of the planetary system would be the gas giants. 105 And as we saw previously, Alfvén also concluded (in 1963 106) from considerations of angular momentum that the gas giants must have been formed before the terrestrial planets. A doctoral thesis presented in 1969 doubted if planets could form beyond the orbit of Saturn and suggested that the planets now out there had been propelled by encounters with others. 107

  These days, the shortcomings of the accretion theory are more widely acknowledged, and it is permissible to propose alternatives. Conference papers discussing the origination of planets and other objects through fission from larger ones are commonplace and receive due consideration. Impact theories are in vogue following identification of the Cretaceous event believed to have caused the extinctions that included the dinosaurs, the most recent proposal for the formation of the Moon attributing it to ejection from the Earth following a strike by a possibly Mars-size body. But no citation ever acknowledges Velikovsky as the first whose ideas had departed from the idealized, endlessly repeating Laplacian machine. 108

  The Earth itself had also departed from the picture of gradual, nonthreatening change that had persisted since the days of Lyell and Darwin. It had been argued that pole shifts and crustal movements of the magnitude that Velikovsky described would have left no stalactites or stalagmites unbroken in caves, yet it was known—according to accepted theory—that such structures were far older than the dates he talked about. But in 1962, in the Gnome Cavern, New Mexico, to the astonishment of geologists, stalactites had grown within one year of the nuclear test explosion there. A newspaper dispatch reported, "All nature's processes have been speeded up a billionfold." (Within five years of the 1980 Mount St. Helens eruption in Washington, strata deposited in new-formed canyons had hardened into rock. With the presence of a fine-grained ingredient to act as a binder, the process resembles the setting of cement and can occur very rapidly.)

  The modern picture of plate tectonics—laughed at in the 1920s when Alfred Wegener first put forward his ideas that continents moved—was coming together in t
he mid fifties, with new evidence appearing in the journals just about every month for magnetic reversals, shifting poles, ice sheets covering what had once been tropics, mountain tops that had been seabeds, and slabs of crust rifting, separating, and colliding like grease patches on cold soup. Velikovsky's sympathizer, Harry Hess, was one of the leading figures in these developments. (Current theory still assumes millions-of-years time scales, arrived at by extrapolating backward the rates of plate movement observed today. My own guess is that these will turn out to be the cooled-down remnant of processes that once operated much faster.)

  Cores from the ocean bottoms were read as testifying to prodigious falls of meteorites, dust, and ash over enormous areas. Claude Schaeffer of College de France, unaware at the time of Velikovsky's work, concluded in a study of archeological strata that the ancient East, as documented for every excavation from Troy to the Caucasus, Persia, Palestine, and Syria, underwent immense natural paroxysms unknown in the modern experience of seismology. Five times between the third and first millennia b.c., cultures disappeared, empires collapsed, cities were buried, climates altered. 109

 

‹ Prev