The Gambit with Perfection (The Phantom of the Earth Book 2)
Page 29
Air samples taken from the surface suggested the strain traveled easily through the Earth’s atmosphere. It did, in fact, latch onto nitrogen gas, using it, carbon dioxide, and sunlight to synthesize energy. It reproduced at rates far faster than natural (and most synthetic) biological organisms. It’s unclear whether the strain could always reproduce outside its human host, or if this ability evolved after its release into the atmosphere. We believe the strain was designed to recognize humans as human before it moved into deadly action, entering the human body in a series of waves, penetrating through the skin, eyes, ears, nose, and mouth. It rapidly reproduced within the host’s neural and blood cells, killing the infected within seconds of exposure, pushing the limit on what we’d previously believed was possible biologically. Bloody discharges from the orifices and sometimes parts of the skin concluded the process. It didn’t seem to have any recognizable impact on other fauna or flora on or in the Earth.
Strike Team Commander Vastar Alalia requested the new biomat, combined with existing synsuit technology, be deployed to his teams. (Previously, the strike teams wore synsuits that protected from high temperature and pressure, but not from Reassortment.) The timing was fortuitous, for the next year, during what the media called the Great Reassortment Panic of 155 AR, an entire government housing sector (holding some 10,000 Livellans including Atticus’s and my parents) perished before the strike teams (who sustained massive losses) could contain the outbreak. They sealed off that part of Livelle with fortified carbyne walls, then flooded it with liquid ethanol and radiation.
Chancellor Hardington ordered an evacuation of Livelle to a newly hollowed city-state positioned 300 meters deep. The engineers recycled much of the composite materials from the legacy city-state to build the new one. At the new depth, Livelle’s temperature was expected to rise to nearly 35 degrees C (which included the net impact of heat generated by the laboratory and population, offset by a new system of horizontal heat loops). With an underground ground temperature near 21 degrees C in the caverns surrounding Livelle, new villages formed along the rivers and streams outside the city-state.
Secretly, prominent scientists of the time had wished the strain would’ve killed more Livellans in 155 AR. They doubted the synism vats we then used could produce enough raw materials for the ever-expanding population. (Chancellor Hardington had refused to enforce the preexisting laws on population controls and instead pressured the Science District’s synbio labs to produce more raw materials and sustenance.)
To our dismay, he was reelected twice. His popularity stemmed from his devout belief in the Twin Gods of the Cosmos and his tight control over the media. Over time, it seemed as if the people came to think of Chancellor Hardington as one of the gods, even as starvation surpassed old age as the greatest killer of transhumans in Livelle. (A positive, if morbid, side effect of Hardington’s incompetence was an increased supply of carbon for composite materials supplied by dead transhumans.)
Reassortment still loomed as a threat to humanity. Tests of the bedrock above Livelle suggested the Reassortment Strain continued seeping underground, below 150 meters. My lab drew up new plans, outlining further descent, but I had this terrible feeling all we were doing was hollowing out a tomb for 90,000 transhumans. Then the disaster many scientists foresaw, happened.
The Great Reassortment Panic of 165 AR struck on the 137th day of the year and for the third time since the Death Wave at the end of the Quaternary Period, Livellans faced the real possibility of extinction. Chancellor Hardington, who grew madder by the day, declared a state of emergency in Livelle after the Reassortment Strain breached the borders of the Information District, killing 5,000 transhumans before the strike teams achieved containment. I feared for Atticus, who’d left our lab in favor of political office, and was elected Minister of the Information District the prior year. Luckily he survived the containment breach.
The chancellor and the ministry evacuated the Central Government District to the Science District, to which I’d been elected the minister of in 164 AR, located at the lowermost level of the city-state. In the meetings that followed, a boisterous Atticus Masimovian demanded the chancellor take a drastic step and move Livelle to a depth of 2,000 to 2,500 meters. He suggested that the high heat and pressure deeper inside the Earth would ensure natural safety from the Reassortment Strain. (While I agreed with my brother-in-development publicly, privately I told him that depth would also prove untenable for transhuman existence without full containment!)
Atticus knew that my team had synthesized a variant of C. perfringens capable of rapidly ingesting limestone and granite, among other minerals, which we called mineral crushers; they were a programmable form of lithotroph or “rock eater,” far more advanced than any that existed Before Reassortment.
Lithotrophs are organisms that naturally occur in the environment, and are diverse enough to include bacteria, archaea, and fungi. Their metabolism is based on the ability of certain enzymes to catalyze reactions where electrons are stripped from metals and inorganic ions. This energy is transferred to cofactors with reductive potential, such as NAD(P)H, which are in turn used to reduce carbon-containing molecules into useful biomolecules. The carbon dioxide may come from biological sources (heterotrophy) or from carbon dioxide in air or dissolved in water. This combination of energy and carbon allows the organism to make new cells. Moreover, lithotrophs commonly use inorganic sulphur-containing compounds for the source of electrons, then excrete the oxidized remains as sulfuric acid. Sulfuric acid readily dissolves minerals such as carbonates and can even break down other types of rock at a slower rate. This activity reveals more metal ions for sources of more electrons, as well as more carbon dioxide for cellular proliferation, and the process repeats. This process can hollow out vast sections of the Earth.
The mineral crushers my team synthesized required large-scale shifting of material (mass transfer) to be successful. Mass transfer was increased by engineering the crushers to be more mobile through an amoeboid locomotion system. They entered into miniscule cracks in rock and worked quickly; by liberating tiny sections of entrapped air in semi-permeable rock, gasses were released; by engineering these synisms to split water (using an enzyme similar to what is known as Photosystem II in photosynthetic organisms), some water from the surroundings was broken down and oxygen was released. The important part was that the crushers didn’t violate conservation of mass or energy; they received the energy from their “food,” in this case slightly reduced metals or other compounds, and they used it to grow, as well as cause change in their surroundings, (i.e. move the compounds in the limestone and granite to slightly different states). Put simply, the crushers, with far faster metabolisms than natural lithotrophs, enabled a rapid, controlled clearance of bedrock inside the Earth.
The descent was less the issue than the temperature and pressure measurements, which I’d assured Atticus would be ominous. My lab calculated that 2.0 km deep, the ground temperature would be about 65 degrees C, while 4.0 km deep, the temperature increased to nearly 130 degrees C. Tests of natural life indicated the highest temperature for any functional living creature was 122 degrees C, and that required at least 2.2 atmospheres (atm) of pressure to prevent boiling. (The air pressure of a shaft at 4.0 km would be about 1.6 atm.) The highest temperature for a functioning animal (not mere survival) was 80 degrees C for the deep ocean floor Pompeii worm (pressure of 400 atm).
We worked tirelessly to adapt the genetic characteristics of the Pompeii worm to the transhuman genome, while the engineering consortiums designed a closed thermosiphon loop that would reach into the nearby lake (170 meters deep), then back down into the new Livelle at 2,500 meters deep. The difference in temperatures would naturally drive fluid flow without pumps, so no energy would be required, while several loops would provide redundancy. Large-diameter loops would actually be used for transport of people and material to “stations” near the surface in sealed “pigs” similar to those used to inspect pipelines from the inside. T
he problem, as ever, was that in addition to liquids and gases, the Reassortment Strain could pass through solids: it would contaminate the water inside the piping, killing all the transhumans in Livelle. To avoid this scenario, we pumped liquid ethanol and radiation into the piping at shallower depths.
The descent didn’t go as planned. Construction on the deeper city-state experienced delays, primarily owing to a lack of leadership. Several less severe Reassortment scares put more pressure on Hardington, who’d narrowly won reelection in 167 AR based on the assurance he was best qualified to rule Livelle during its existential crisis. But where his approval had hovered near 50 percent at the time of his reelection, by the following year it had dropped to just 20 percent, the lowest for a chancellor in Livelle’s history.
He imposed Martial Law following another Reassortment scare, ceding control of the city-state to General Palomar, the leader of Livelle Guard. When demonstrators against the Hardington Administration organized in Centaurus Square, Palomar ordered the Guard to arrest anyone who gathered there and on the city’s pathways. Peace returned to Livelle, for a time. The ministry urged the chancellor to address the people. On the 245th day of the year 168 AR, he gave a speech in Centaurus Square before a crowd that turned violent.
Vastar Alalia ordered the strike teams to stand aside as General Palomar and the Livelle Guard were overwhelmed by the crowd. A pulse blast echoed throughout Livelle’s main level, and Chancellor Hardington collapsed in a pool of blood.
Atticus Masimovian, the Information District’s popular minister and heir-apparent to the chancellorship, took Hardington’s place at a podium before the people. He gave his most famous speech, ending it with the words all future Beimenians knew as well as their own names: “Henceforth, there shall be thirty precepts by which thirty territories of a Great Commonwealth of Beimeni shall live.” There began the Age of Masimovian and the Great Commonwealth of Beimeni.
The new chancellor, in a break from his predecessors, ordered the scientists to synthesize the biologically mediated nuclear processes abandoned by Noriel Livelle. He called the theoretical synisms part of these processes, which would produce minerals and metals, biostars. To accelerate research into biostars and that into transhuman genome enhancement, Chancellor Masimovian formed a Research & Development Department (RDD) to be led by the Supreme Scientific Board of Beimeni. He worked closely with the board, appointing me to be its chairman and our longtime friend Ahab Janzer to be its vice chairman. At the first board meeting, he mapped out an ambitious expansion plan—including thirty territories spread from the arctic to Central America—even as we still lacked protection from the high heat and pressure of the deep Earth and as Reassortment roamed the bedrock around Livelle. His plan received much pushback.
“The Earth contains species capable of living in extreme conditions,” Masimovian objected. “We need only convert these adaptations to the transhuman genome to ensure our survival at depths never before possible in the history of man.” Similar to his ancestors, Atticus had a way of stirring creativity, ambition, and hard work among his fellow transhumans. I’d never seen my team work so tirelessly on anything in my life. While it would take decades before transhumans discovered methodologies to transform bacteria into biostars (which relied heavily upon manipulation of the zeropoint field), we immediately recycled and transferred enough composite materials from the city-state to build Livelle City (the first capital city of the Great Commonwealth of Beimeni).
We also enhanced our genome such that our bodies could, for a period of time, withstand higher temperatures and pressure within the deep Earth. The Beimenian transhuman exhibited structural advantages as compared to the Livellan transhuman, including, but not limited to: (1) cellular nanostructures for support against physical crushing; (2) additional “aftermarket” macrostructures (i.e., bones); and (3) an alteration of the chemistry of the transhuman body through the use of enzymes engineered to maintain efficacy even when intracellular partial pressure of gases was increased.
We’d still require a system of controlling the extreme heat and pressure in an uncontained commonwealth, but it was a start. We’d need a more creative way to terraform the Beimeni zone of the underground, roughly 2,000 to 2,500 meters deep. Carbyne pipes used to release the pressure of the deep Earth would have theoretical built-in resistance to Reassortment seepage in that gases would rapidly escape through them to the surface. But the chancellor required the pressure-release piping be treated with radiation at shallower depths. Separately, while the lake near Antelope Canyon might’ve provided a means to cool Livelle City, it could not cool an entire commonwealth stretched across an entire continent.
For the coolant, the two sources we coalesced around were the Pacific Ocean to the west (at the 37th parallel) at a distance of 885 km, and an unnamed arctic bay (what was known as Hudson Bay, Before Reassortment) to the north (at the 51st parallel) at a distance of 2,575 km. Each option presented opportunities and challenges, for while the ocean was closer to the city, to build a tunnel and piping through the West was to build it through a highly seismic region of the continent. Meanwhile, the bay was nearly three times as far and would require more resources, including time and sustenance. (Note: by this time in the Earth’s history, the Great Lakes had become the Great Canyons.)
On the recommendation of Chancellor Masimovian (and against my opinion), the board approved a western expansion into a new territory called Angeles. It took three years to complete construction of the downward-sloping coolant piping from Angeles City on the coast to Livelle City deep beneath Antelope Canyon. We built the commonwealth’s first coolant station at the border of the continent in Angeles City, burrowing through the bedrock into the Pacific Ocean. Tests of the salt water at a depth of 2,000 meters suggested it wasn’t contaminated by Reassortment. Even so, we treated the salt water entering the piping with liquid ethanol and radiation, then let it flow down to Livelle City at its depth of about 2,500 meters.
With renewed hope and momentum, Chancellor Masimovian pushed for expansion in the West and South. He requested Vastar Alalia to allow his strike teams to participate in the construction and Vastar agreed. The chancellor also modified the existing system of transhuman development, instituting a round of testing (that would later be called the Harpoon Exams), followed by an auction (that would later be called the Harpoon Auction). Formal competition among the houses of development led to exponential advancement in genomic enhancement and transhuman evolution, which, in turn, led to new scientific breakthroughs.
The commonwealth rapidly expanded from Livelle City in Natura Territory to Luxor City (Luxor Territory), Zanclea City (Reanaearo Territory), Wenlock City (Jurinar Territory), Piscator City (Piscator Territory), and Yeuron City (Yeuron Territory) in the South, concurrent with expansion in the West, including Gaia City (Gaia Territory), Silkscape City (Lovereal Territory), and Dunamis City (Dunamis Territory). (The southernmost cities of Port Newland and Huatervian City in Haurachesa Territory would not be formed until 217 AR and 227 AR, respectively, while the collapse of Angeles City in 214 AR halted further construction in the designated Western Inaccessible Region of highly seismic earth. Angeles City was renamed the City of Eternal Darkness, and Angeles Territory was renamed Nyx Territory after the collapse.)
Decades before the collapse of Angeles City, I’d convinced Chancellor Masimovian to create coolant piping that would ensure his expansion plan succeeded—the pipelines to the arctic bay. I worked closely with Vastar Alalia to design primary pipelines from the 55th parallel on the western side of the arctic bay (in what would later be called Area 55) and from the 51st parallel on the southern side (in what would later be called Area 51), down to proposed cities in Underground North, including Boreas City (Boreas Territory), Nurino City (Zereaux Territory), and Arrowhead City (Columbia Territory).
Secondary pipelines (with multiple redundancies) were designed to run from these cities to existing cities in Underground West and South, and proposed cities in Underground No
rth including Xerean City (Xerean Territory), Farino City (Farino Territory), and Kiplorea City (Kiplorea Territory); Underground Central including Beimeni City (Phanes Territory, which became the capital city and territory of the Great Commonwealth in 197 AR), Cineris City (Cineris Territory), Ope City (Ope Territory), Portage City (Portage Territory), Vivo City (Vivo Territory), and Nexirenna City (Nexirenna Territory); and Underground Northeast including Gubertiana City (Gubertiana Territory), Northport (Gallia Territory), Palaestra City (Palaestra Territory), and Volano City (Volano Territory).
From the Northeastern cities, more pipelines would be built to the newly constructed Research & Development Department (RDD) east of Palaestra City, along with proposed cities in Underground East, including Peanowera City (Peanowera Territory), Navita City (Navita Territory), and Alpinia City (Marshlands Territory). Finally we built a smaller coolant station where the man-made Hillenthara River met the Atlantic Ocean; the pipelines from this station would serve cities and villages along the river and provide a redundancy for Gubertiana City in Underground Northeast.
From 168 AR to 227 AR, the RDD scientists, the strike teams, (and beginning around 220 AR, the Janzers), completed the most aggressive engineering project in human history. We’d burrowed through tens of thousands of kilometers of earth and built carbyne piping to release the pressure of the Beimeni zone and to transport cool salt water and freshwater to stations in cities and villages around which civilizations of transhumans would form. In all the cities and villages along the man-made rivers (which served as runoffs for the coolant system), we built carbyne pillars to fortify the structure of the newly formed Beimeni zone of the underground. We also built synbio vats to provide electricity, breathable air, food, and water, with the understanding that the ultimate responsibility for raw material production was in the RDD. (Note: following the synthesis of biostars in the early 200s, the carbyne support pillars were replaced with compressed diamond support pillars at the insistence of Chancellor Masimovian.)