Book Read Free

Life's Greatest Secret

Page 49

by Matthew Cobb


  as metaphor 112, 147–9, 159, 203, 298, 300

  in molecules other than DNA 275

  nongenetic transmission 255

  philosophers on the nature of 144, 149, 202–3, 297–303

  role in biology 30, 73, 82–7, 119, 299–300

  role in biology questioned 142, 144, 149

  Shannon’s definition of 78, 82, 144, 147

  information flow

  central dogma concern 262–3, 265, 306

  in enzyme induction 307

  protein → DNA disallowed 136, 138, 251–2, 265–6

  protein → protein 253

  in protein synthesis 168–9, 251

  ‘Information in Contemporary Science’ colloquium 202, 205

  information storage potential of DNA 271–2

  information theory

  influence on molecular genetics 307

  Oak Ridge symposium 142–6, 148–9

  Royal Society conference 81

  Royaumont colloquium 202–3, 205

  Information Theory in Biology symposium 84

  Information Theory in Health Physics and Radiobiology Symposium 142–9

  Informational Macromolecules symposium, 1962 204–5

  Ingram, Vernon 125–8, 132, 165

  inheritance

  of acquired characteristics 138, 260

  fundamental question of 1

  insects as crustacea 239

  intelligence, genetic effects 305

  5th International Congress of Biochemistry, Moscow, 1961 183, 185–8, 190–2

  International Human Genome Sequencing Consortium 232–3

  intraspecific variation 236

  introns

  and code universality 226

  coinage of the term 222

  evolution 222–3

  human genome project 232, 238

  preventing back translation 301

  iso-G and iso-C 278

  isochores 296

  isotopic labelling 67, 163–4

  J

  Jackson, David 279

  Jacob, François

  ideas on genetic regulation 168–71, 256–7

  meeting with Crick and Brenner 165–6

  meeting with Monod 155

  meeting with Szilárd 152

  on messenger RNA 178

  on natural selection 215

  on ‘night science’ 171, 218

  and Nirenberg 175, 185–6, 189

  Nobel Prize 215

  operon model 169–71, 243, 306

  PaJaMo studies 155–6, 158, 160, 166, 178

  report of Crick’s protein synthesis lecture 130

  repressor action on DNA 158–9, 257

  at the Royaumont colloquium 203

  see also Monod

  Jeffreys, Alec 230

  Joad, Professor Cyril 83

  Johannsen, Wilhelm 3

  Johns Hopkins University symposium, ‘The Chemical Basis of Heredity,’ 1956 161–3

  Jones, Bill 192

  Journal of Molecular Biology 160, 167, 185

  Joyce, Gerald 275

  Joyce, James 268

  Jukes, Thomas 201, 226

  ‘junk DNA’ 247–9, 299

  K

  Kalmus, Hans 86–7

  κ and Π base pairs 278

  Kawaoka, Yoshihiro 280

  Kay, Lily 88, 180, 181f, 185n

  keratin 84, 94–5, 105

  Khorana, Gorind 208–9, 212, 214

  Kilburn, Tom 74

  Kimura, Mitoo 148

  King, Martin Luther 272

  King’s College, London 89–90, 92–5, 98–9, 101–8, 165

  Kolmogoroff, Andrei 77

  Koltsov, Nikolai 6–7, 12, 15, 17

  L

  lactose, and enzyme induction 152–3, 156, 243

  Lamarck, Jean-Baptiste 72, 138, 260–1

  Landy, Art 187–8

  Lane, Nick 287

  Large Hadron Collider 272

  Lazarsfeld, Paul 29

  Leder, Phil 209

  Lederberg, Joshua

  correspondence with von Neumann 146

  enthusiasm for nucleic acids 58–9, 63

  Nobel Prize 51, 215

  Quastler’s symposium and 84

  rejects Nirenberg 175

  views on terminology 87, 161, 244

  Lengyel, Peter 190–1, 203

  Leopold, Urs 87

  leucine, alternative codons 294–5

  Levene, Phoebus, tetranucleotide hypothesis 7, 42–3, 51, 54, 62, 90

  life, alien forms 275

  life, origins of 286–9

  Life Itself by Francis Crick 287

  Linschitz, Henry 85

  Lipmann, Fritz 189

  Lockyer, Becky 255

  Lu, Timothy 272

  LUCA (Last Universal Common Ancestor) 227, 290, 293

  Luria, Salvador 8, 34, 65–6, 97, 215

  Luzzati, Vittorio 116

  Lwoff, André 59–60, 155, 202, 215

  Lysenko, Trofim Denisovich 260–1

  lysine, genetic code for 190

  lysozyme 125

  M

  M-9 predictor 24

  Maas, Werner 157

  MacLeod, Colin 38–41

  Macy conference 29

  ‘ the magic twenty’ 117, 179

  The Major Transitions in Evolution (book) 299

  mammals

  base pair frequencies 295

  discovery of ‘split genes’ in 221

  genomic imprinting 248

  origin of the placenta 245

  Manchester 9, 26, 74, 162, 289

  Mandelbrot, Benoit 203

  Manhattan Project see atomic bomb

  Manton, Irene 17

  Margulis, Lynn 224

  Mars, terraforming 279

  Martians 268–9

  Martin, Bill 287

  Martin, Bob 192

  ‘maternal effects’ 258

  mathematics

  approaches to the genetic code 115–16, 143, 174–5, 201, 214–15, 301–2

  of next-generation sequencing 235

  Patterson function 92, 103, 106

  readers’ tolerance of equations 73–4

  of Schrödinger’s code-script 14

  Mathematical problems in the biological sciences symposium 175

  Matthaei, Heinrich

  Cold Spring Harbor 1966 Symposium 214

  collaboration with Nirenberg 173–5, 177–87

  competitors 189–91

  Crick’s reaction to 193–6

  genetic code success 174, 181–2

  not awarded the Nobel Prize 215

  Maxwell’s Demon (James Clerk Maxwell) 27, 30, 76

  May, Lord (Robert May) 281

  Maynard Smith, John 299–300

  Mazia, Daniel 61–2

  McCarty, Maclyn 41, 43, 46–7, 49, 55, 62, 66, 189n

  McClintock, Barbara 245

  McCulloch, Warren 24, 82, 86, 149

  Mead, Margaret 22, 24

  meaning and information flow 78–9, 144

  meiosis 12

  Mello, Craig 283

  Mendel, Gregor 2–3, 128

  Meselson, Matthew 163–5, 167, 186–8

  messages see communication; information theory

  messenger molecule, PaJaMo group 156, 165

  messenger RNA (mRNA)

  cross-species transfer 271

  discovery 166–7, 169

  function 317

  Nirenberg’s work with 178, 180, 184–5, 208

  PaJaMo group and 166, 178

  potential manipulation 284

  pre-mRNA processing to 222

  switch of code investigations to 198

  untranslated regions 297

  use of possible codons 208, 211

  metaphors

  information as 112, 147–9, 159, 203, 298, 300

  risks associated with 313

  methionine/start codon 213

  methylation of cytosine 256–8

  microsomal particles (ribosomes) 134

  Mies
cher, Fritz 14–15

  Miller, Stanley 286

  Mirsky, Alfred E. 41–3, 55–9, 62, 64, 90–1

  MIT (Massachusetts Institute of Technology)

  Broad Institute CRISPR patents 284

  David Baltimore at 251

  Elias at 147

  Farzadfard and Lu at 272

  Phillip Sharp at 223

  Shannon at 25, 27

  Wiener’s group at 21, 24–5

  mitochondria

  maternal effects 258

  and the origin of eukaryotes 239

  mitochondrial DNA 224–5

  mitosis 12

  ‘Models in Biology’ symposium 147

  models of DNA

  Astbury on 54

  early attempts 99–100, 103

  triple helix models 99–100, 104, 106

  Watson and Crick’s final model 106–7, 107f

  molecular biology

  coinage of the term 21

  Ed Tatum on development of 204

  funding and coordination 217, 312

  Journal of Molecular Biology 160, 167, 185

  Molecular Biology of the Gene, by James Watson 140, 251

  molecular geneticists 130, 267

  molecular genetics

  Benzer’s role in creating 162

  changes in the practice of 310

  colinearity assumption 213

  contribution of Jacob and Monod 170

  Darwinian framework 220

  influence of cybernetics and information theory 148, 298–9, 307–8

  reverse transcriptase role 252

  universality assumption 250

  validity of the word ‘code’ 301

  see also central dogma

  Monod, Jacques

  Chance and Necessity book 306

  on cybernetics 407

  ‘derepression of repression’ 257

  on dogma 137

  enzymatic adaptation/induction 152–3

  Essays in Enzyme Cybernetics project 159

  ideas on genetic regulation 168–71, 220, 226, 243

  on negative feedback 153–4

  PaJaMo studies 155–6, 158, 160, 166, 178

  see also Jacob

  Morgan, Thomas Hunt 3–6, 9

  Moscow, 5th International Congress of Biochemistry, 1961 183, 185–8, 190–2

  mRNA see messenger RNA

  Mueller, Howard 51

  Muller, Hermann

  on Avery’s work 50–1, 56

  crystal-growth model 7, 15

  inducing mutations with X-rays 5

  Nobel Prize 33

  reaction to What is life? 18

  relationship with Morgan 4–5

  viruses as models for genes 8

  Mullis, Kary 229–30

  multicellular organisms

  horizontal gene transfer in 271

  information storage 299

  mutations

  bacterial enzyme induction and 155–6

  directed/targetted mutations 39, 45, 56, 283

  frequency and inheritance of 13

  inducing with X-rays 5–6, 10

  point mutations and frame-shifts 223

  Schrödinger’s views on 12–13, 18–19

  single-gene, effects 127–8

  T4 phage work on triple coding 192–3

  Mycoplasma mycoides 267–8

  Myriad Genetics 234

  N

  Nagasaki 18, 28–9, 89, 151

  Naples, Symposium on Submicroscopical Morphology in Protoplasm 96–7

  Napp, Abbot of Brno 1–2

  Nasuia deltocephalinicola 237

  national differences over genetics as information 81–3

  National Institutes of Health group 173, 175, 183, 192, 209

  natural selection

  and the central dogma 262

  effect on genetic information 299–300

  non-functional DNA as exempt 262

  Nature

  book reviews 17, 50

  Brenner, Jacob and Crick paper 178+

  Brenner, Jacob and Meselson paper 167

  Crick et al. on the triplet code 193, 197

  Gamow letter 114

  Gilbert on automation and computers 310

  Gilbert on introns 221–2

  human genome project 233

  Ingram letter 127–8

  letter from Ephrussi et al. 87–8

  papers by Wilkins et al. 94

  on the reversal of the central dogma 250–1

  Watson and Crick letters 109, 111–13

  Nature Genetics paper with 440

  authors 311

  Neanderthals 240–2

  Neel, James 126

  ‘negative entropy’ (negentropy) 12, 18, 75–6, 78, 202

  negative feedback in biology

  in behaviour 23–5

  Cold Spring Harbor symposium on 168

  in protein synthesis 151–4, 153–5, 157, 168

  pyrimidine biosynthesis 154

  repression distinguished from 168

  systems biology legacy 306

  Wiener on 30, 75–6, 79

  see also cybernetics

  negative feedback in history 76

  neo-Darwinian synthesis 138

  Neufeld, Fred 37

  neural networks 307

  neuronal development 223, 239

  Neurospora 10

  ‘night science’ 171, 218

  Nirenberg, Marshall

  at Cold Spring Harbor 1963 Symposium 207–8

  at Cold Spring Harbor 1966 Symposium 214

  collaboration with Matthaei 173–5, 177–80

  to Crick on press coverage 197

  on Crick’s demonstration of a triplet code 194

  Crick’s evaluation of 186–7, 192–5

  Lily Kay on 185n

  Moscow Congress presentations 186–7

  Nobel Prize and evaluation of 215–17, 309, 312

  rivalry with Ochoa’s group 191–2, 196–7

  at the Royaumont colloquium 203

  at the Rutgers symposium 204–5

  various rejections 175, 183

  work with synthetic RNA fragments 209–12

  Nobel Prizes

  awards for genetic code work 215; limit on numbers sharing 167n; potential recipients 284; potential recipients overlooked 59, 108, 167n, 215

  Nobel Prize in Chemistry

  Sidney Altman 288; Christian Anfinsen 264; Paul Berg 279; Thomas Cech 288; Wally Gilbert 228, 279; Kary Mullis 229n, 230; Max Perutz 17; Fred Sanger (twice) 120, 228, 279

  Nobel Prize in Chemistry (and later Peace)

  Linus Pauling 17

  Nobel Prize in Physics

  Louis de Broglie 82; Dick Feynman 117

  Nobel Prize in Physiology or Medicine

  David Baltimore 252; George Beadle 215; Sydney Brenner 215; Macfarlane Burnet 34, 140; Francis Crick 18, 108, 207, 215; Max Delbrück 215; Renato Delbucco 252; Andrew Fire 283; Al Hershey 215; Robert Holley 215; François Jacob 215; Gorind Khorana 215; Joshua Lederberg 51, 215; Fritz Lipmann 189; Salvador Luria 215; André Lwoff 215; Barbara McClintock 245–6; Craig Mello 283; Jacques Monod 157, 215; Thomas Hunt Morgan 5; Hermann Muller 33; Marshall Nirenberg 215; Severo Ochoa 176, 215; Stanley Prusiner 254; Richard Roberts 223; Phillip Sharp 223; Wendell Stanley 64; Ed Tatum 215; Howard Temin 252; Harold Varmus 188; James Watson 18, 108, 207, 215; Maurice Wilkins 18, 108, 207, 215

  non-coding DNA 141, 222, 232

  non-repetitive code-scripts 15

  non-ribosomal peptides 264

  nongenetic transmission of information 255

  Northrop, John 46, 66

  Novick, Aaron 153–4, 168

  NRDC (National Research Defense Committee) 20–1, 27

  nucleic acids

  genes as 47, 52, 91

  identification of the transforming principle as 38, 40

  possible information transfers with proteins 136

  publishing and conferences on 53

  supposed uniformity 42

  virus use of DNA or
RNA 289

  see also DNA; RNA

  nucleic acids, synthetic see oligonucleotides; polynucleotides; XNA

  nucleic acid bases see bases

  nuclein (now DNA) 7, 15

  nucleoproteins

  defined 317

  as imagined material of genes 42–3, 60, 94, 97, 200n

  nucleotides

  defined 317

  sequence variation and specificity 57–8

  see also bases

  Nyquist, Harry 27

  O

  Oak Ridge National Laboratory 62, 122, 142, 144, 148–9

  Ochoa, Severo

  discovery of polynucleotide phosphorylase 176

  Informational Macromolecules symposium, 1962 204–5

  on mRNA reading direction 212

  Nobel Prize 215

  openness to a doublet code 201, 205

  polynucleotide investigations 190–2, 196–9

  rivalry with Nirenberg and Matthaei 189–92, 209

  at Royaumont 203–5

  at the Rutgers symposium 204–5

  Ohno, Susumu 247

  olfactory receptor genes 245

  oligonucleotides 208–9

  On the Human Use of Human Beings, by Norbert Wiener 83, 268

  On the nature of gene mutation and gene structure (‘Three-Man Paper’) 6, 13, 17–19

  ‘one gene, one enzyme hypothesis’ 10–11, 160, 204, 244

  ‘onion test’ 246–7

  operons 169–71, 243, 306, 317

  organic sensors 273

  Orgel, Leslie 178, 287, 292

  origins of life 286–9

  Osawa, Syozo 226

  Oxford Nanopore Technologies 236

  P

  Pääbo, Svante 240–1

  PaJaMo (Pardee, Jacob and Monod) studies 155–6, 158, 160, 166, 178

  palaeogenomics 240–1

  pandas, giant 235

  panspermia, directed 287

  Paramecium 225

  Pardee, Arthur 154–6, 168

  see also PaJaMo studies

  Paris, ‘Biological units endowed with genetic continuity’ meeting 53, 59–61

  ‘parity thesis’ 303

  patenting issues 232, 234, 284

  Patterson function 92, 103, 106

  Pauling, Linus

  at Cerebral Mechanisms in Behavior symposium 80

  molecular structure of DNA 104–5, 108

  molecular structure of proteins 84–5, 94–5, 97, 100, 105

  reaction to Ronwin’s structure 103

  reaction to What is life? 17

  on sickle-cell anaemia 126

  PCR (polymerase chain reaction) 229–30, 276, 317

  PCSK9 gene 237

  pea aphids 270–1

  peas, Mendel’s experiments 2–3

  peptides

  assembled without DNA involvement 264

  as possible early replicating systems 288

  personalised medicine 236–7

  Perutz, Max

  haemoglobin studies 126

  hands Watson and Crick MRC report containing Franklin’s data 105, 122

  human genome project and 233

  joined by Watson 97

 

‹ Prev