Book Read Free

The Beekeeper's Lament: How One Man and Half a Billion Honey Bees Help Feed America

Page 8

by Hannah Nordhaus


  But in the late summer of 2004, he realized, too late, that it was no longer working. He was in a bee yard in rural Lehr, North Dakota, on the farm of Wilbur Hauff, a “cool old bachelor” in his eighties, a gifted gardener with a soft spot for honey. Hauff’s yard was on sandy soil, and Miller’s hives sat in an area that was relatively free of grass, making it easier to work the hives (no hidden badger holes) and to see what was going on at the base of them. The colonies were not doing well, and Miller couldn’t understand why the bees weren’t making honey. Then he examined the base of the hives. “I looked down, onto the sand,” he writes, “and there they were . . . ANTS!”

  Ants are what Miller and Ryan Elison, his right-hand man, call worker bees that have been parasitized by varroa mites. They are undersized bees with deformed wings—infants, barely hours old but already ejected by the housekeeping bees. Exiled, they crawled in front of the hive entrances, confused and underweight, riddled with deformed wing virus, a destructive pathogen that mites carry with them into a hive. Miller got down on the ground to observe the ants more closely—just, perhaps, as young Lorenzo Langstroth had, wearing out the knees of his pants in pursuit of insect knowledge—and experienced a distinctly unpleasant flash of recognition. “Eureka, Jeeves, I’ve got it!” The mites were adapting. The coumaphos was failing. So were his hives. “The outfit was crashing, right before my very eyes.” It was too late to stop the conflagration. The hives were too heavily infested, and the last bees of the summer harvest were too sick to forage. They would not produce enough honey for the winter. It was too late to restock with healthier bees; there was nothing to be done. Miller put his hives away for the winter sick and hungry, and hoped against all his years of accrued wisdom that they would recover.

  They wouldn’t. The varroa mite, once a frightening but manageable problem, had become a wily adversary, a daunting foe, a small, red great white whale. The next January, Miller saw the fruits of its handiwork. He unloaded an early semi of bees in a large orchard in Los Banos, California, in preparation for the almond bloom and discerned immediately that they were “garbage.” Most had only two frames of healthy bees instead of the usual eight; whole semitruck loads were dead. The honey crop had been bad that year, so his hives had headed into winter light. He had less honey, fewer bees, ineffective coumaphos, a high mite load, and a high virus load. It was, he says, a “darn near perfect storm.” By spring Miller had lost four thousand hives; his life’s work had diminished by more than a third. The same was true for many of his colleagues. “In the old days we were shouting and spitting and swearing if we had an eight percent dud rate. Now people would be happy with that,” he says. “We hauled semi loads of dead bees and equipment from the orchards.”

  It was a lesson Miller didn’t need to learn twice. From then on, he took no chances with the varroa mite. As is typical of beekeepers, Miller blamed himself. He didn’t see it coming, he wrote, “because I wasn’t doing the work INSIDE the hive, taking sticky board samples, opening brood, LOOKING, LOOKING, LOOKING . . . I was neglecting about the most important thing a beekeeper can do; to monitor hive health issues.” After the “dope slap” of 2004, he began inspecting his bee yards far more frequently and monitoring the gossip grapevine among bee guys and bug guys to learn what could kill mites without killing hives. He began spending nearly every free moment in his “Frankenstein yard”—an apiary stocked with non-honey-producing colonies where he performs daily counts of mites and treats different hives with different EPA-approved and not-so-approved medicines.

  In his Frankenstein yard, Miller tinkers with materials like formic acid, which, he learned, is reasonably effective at killing mites, but only if temperatures stay between 60 and 80 degrees for two weeks. At colder temperatures it doesn’t emit sufficient fumes to kill the mites; at warmer temperatures it becomes volatile, and although it doesn’t appear to harm bees, it can harm humans, who must wear a respirator while applying it. The grapevine conveyed stories of beekeepers who neglected the respirator and ended up puking blood in their bee yards. Thymol, a plant extract that is the main component of thyme oil, is also approved for use in beehives and effective against varroa mites, but the bees don’t like it, and if there’s a firestorm of varroa mites in a hive, a beekeeper can’t count on thymol to put it out. Oxalic acid is a natural wood-bleaching compound that can, with regular, conscientious application every three days for the varroa’s twenty-one-day breeding cycle, disrupt the mite’s progress. It’s less dangerous to humans than formic acid—it only causes temporary blindness—and works better, nuking the hemolymph of the mites without damaging the bees. But it is not EPA-approved, and it doesn’t work nearly as well as Apistan and coumaphos once did.

  It is difficult to find a material that will kill bugs on bugs.Miller compares it to having a chimpanzee on your back, grabbing you by the throat and biting you on your neck. You are bleeding profusely, and you have to find something in your medicine cabinet, quick, to splash on the chimp that will kill it but not you. In the case of the varroa mite, beekeepers need materials that will kill acarids—ticks and mites—without harming bees or contaminating the honey. “We don’t have a lot to work with,” says Miller, “and by the way, I’m trying to protect honey’s good name.” Many of the approved natural miticides require a level of intervention that is not possible for large-scale beekeepers. Apistan and coumaphos were easy—plastic strips coated with low doses could be placed in the hives and forgotten. Other treatments require beekeepers to remove each frame from a hive and spray a light mist on the bees. This has to happen once or twice a week for three weeks during the brief time in late fall when there are few capped brood cells that can hide the mites and no surplus honey being produced for sale to humans. For hobbyists with a few backyard hives, it is possible, but for commercial beekeepers with a thousand or more colonies, it’s not.

  Instead, many beekeepers have turned to an off-label pesticide called amitraz, also known as Taktic, which is used to kill ticks on sheep, cows, and swine. Amitraz is said to work as well as coumaphos once did, with fewer toxic side effects. It is illegal to use on bees. But as long as beekeepers are careful that there are no residues on their colonies when their hives are producing honey for sale to the public, most agriculture inspectors won’t ask too many questions. Critics of the practice argue that insecticides seep into honeycombs as water absorbs into a sponge, infiltrating the honey that is stored in it. But this was already the case with coumaphos and fluvalinate. And regardless, it is only a matter of time until the amitraz stops working. In the meantime, scientists are racing to find a more sustainable solution.

  Research in the world’s “few lonely bee labs,” as Miller describes them, tends to follow two tracks: developing a better miticide, or breeding a stronger, more disease-resistant bee. So far, however, these efforts have been more successful at breeding a better mite through pesticide use than at breeding a better bee. Indeed, the varroa mite has proven far more adaptable than either the honey bee or its human protectors—every effort to control the mites has ultimately succeeded only in producing a more powerful and resistant creature. “Eventually,” says Miller, “we could breed a mite that was resistant to a hammer.” This dynamic isn’t helped by the fact that the process of developing miticides for approval by the EPA takes at least three years, often longer, and that the research requires considerable time and money. There’s rarely sufficient profit motive for a chemical company to do the research needed to get a new varroacide approved—in case it’s not abundantly clear by now, there’s not a lot of money in beekeeping. Were several effective miticides on the market at a time, beekeepers could engage in a rotational scheme of “integrated pest management,” using materials for limited periods, switching before the mites developed resistance. As it is, by the time a new miticide is approved, the old ones have failed. So beekeepers either follow the rules and risk losing everything or try nonsanctioned home remedies to keep their hives alive.

  There are other, more pala
table options on the horizon. Mites live in what Denis Anderson, the Australian entomologist, describes as a “chemical world.” They don’t have eyes; they have hairs and sensory organs that respond to chemical signals that tell them where they are. “It’s quite a complicated world, a huge city of bees, and they’ve got to get around that city and get to a particular spot in that city where they are able to reproduce and then spread out into the bigger world,” he says. “A bat sees with sound. A varroa mite sees with chemicals.” Scientists studying the varroa mite are looking into the possibility of developing traps that mimic the chemical smells that attract mites and tell them when to reproduce. Genetic research has also yielded incremental progress. The Asian bees did, after all, learn grooming and hygienic behavior to detect and expel varroa mites from their midst. Researchers have, with limited success, sought to breed European bees with similar survival mechanisms. Others are designing hives with holes in the bottom that the mites fall through when they leave their hosts for a new brood cell. Some beekeepers claim that mite loads disappear when bees are placed in “top-bar” hives that mimic a natural hive environment, though that does not explain the disappearance of every feral hive in the country. Top-bar hives also are difficult to move and work with, for all the reasons that led the world’s beekeepers to adopt the Langstroth box hive in the first place.

  So beekeepers have had to learn to live with losses that, twenty years ago, were unthinkable. If a 10 percent loss was considered horrible then, a 20 percent loss isn’t so bad today. Beekeepers now realize they had it easy before the varroa mite. Their bees still suffered from bacterial invasions, fungal infections, moths, mice, skunks, and bears—it was still difficult to make a profit—but really, beekeeping provided a pleasant lifestyle. You could leave your hives in a meadow and do other things—go on long vacations, run a marathon, go fishing, hunting, watch TV. The honey bee would take care of itself. It would forage, build, swarm, run wild, go feral, survive. Today, thanks to the varroa mite, the European honey bee is, in most of the world, a purely domesticated creature, and one on life support, at that. Without beekeepers, Western honey bees would not survive.

  “It used to be pretty simple,” Miller wrote.

  American foulbrood.

  European foulbrood.

  Chalkbrood.

  Ants, predating ants that could be sent to ant heaven with a shovel, and a tablespoon of Cyanogas dust deep into the nest . . . great stuff; very lethal.

  Then came this tracheal mite thing . . . and hard on its heels, came Ms.

  Varroa.

  All of a sudden, the world changed.

  It was, and remains: Ms. Varroa, her children,

  And

  Everything else.

  There are, however, some advantages to losing half the nation’s bee herd in less than two decades. Miller likes to say that bee guys always knew they were important, but nobody else did. Now that bees are dying, almond guys—and cherry guys, apple guys, watermelon guys, canola guys, blueberry guys, cantaloupe guys, and all the other pollination-dependent farm guys—have also come to realize that bee guys are important.

  Chapter Four

  Faustian Bargains

  VARROA MITES ARE TERRIBLE FOR BEES. SO ARE ANY NUMBER of other pests and diseases. The first European honey bees arrived in America in the 1620s; the first widespread European bee losses were reported in 1670—around the time that honey bees themselves became widespread. Historians now suspect that this early North American die-off was caused by American foulbrood, the same pestilence that afflicted Miller’s dad and Miller’s granddad and at one time seemed like just about the worst thing that could happen to a beekeeper. Foulbrood is a bacterial contagion that grows like a mold within brood cells and gives the normally pearlescent white bee larvae a stringy yellow hue. The larvae turn a macabre brownish black tint as they die, emitting what Lorenzo Langstroth described as a sour, “noisome stench.” Langstroth believed the disease could be regarded “as the greatest possible calamity to beekeeping.” Even today it is, if left untreated, a calamity. When worker bees discover contaminated larvae and clean out a hive, they spread the disease spores throughout it. The spores can remain inactive for as long as forty years and emerge to spark another epidemic. In Langstroth’s day, the only way to control the disease was to burn an infected hive with all of its inhabitants. This scorched-hive strategy offered only temporary respite: outbreaks in the 1930s and ’40s brought losses as large as anything wrought by varroa mites or CCD. Until the advent of sulfa-based antibiotics during World War II, foulbrood’s mass carnage was a regular feature of the beekeeping life.

  Foulbrood wasn’t beekeeping’s only problem. It was an invasion of wax moths that prompted Langstroth to declare the years before he invented his hive in 1851 “some of the worst seasons ever known for bees.” The moth, a dreary-looking creature about the size of a nickel, thrived in “discouraged populations” and seemed particularly well adapted to life in the confinements of the hive. It could “crawl backwards or forwards, and as well one way as another”; it could “twist round on itself, curl up almost into a knot, and flatten itself out like a pancake.” It could employ, in short, all manner of “stratagems and cunning devices” to make a beekeeper’s life miserable. The wax moth was nothing new in Europe: Langstroth recalled that Virgil, Columella, and other “ancient authors” described the insect as a “plague of their Apiaries”; Swammerdam dubbed it the “bee-wolf.” The “ravages of the bee-moth” halved the number of colonies in the “Northern and Middle States” in the 1830s and ’40s, Langstroth wrote, and as for beekeepers, “multitudes have abandoned the pursuit in disgust.”

  In his 1853 treatise, Langstroth also described nosema, a diarrheal disease associated with muddy black excrement on hive entrances and floors. It had an “intolerably offensive smell” and tended to occur during winter, when northern bees were confined in poorly ventilated environments: “Is it not under precisely such circumstances that cholera and dysentery prove most fatal to human beings? The filthy, damp, and unventilated abodes of the abject poor, becoming perfect lazar-houses to their wretched inmates.” He also lamented the incursions of mice, wasps, ants, spiders, “gallinaceous birds,” even amphibians: “The toad,” he noted, “is a well-known devourer of bees.”

  Langstroth’s new hive helped detect and destroy many of these pathogens and predators by allowing beekeepers to examine their colonies. But even with improved hive technology, the world’s apiarists remained subject to recurrent losses. In 1904, nine years after Langstroth’s death, a mysterious ailment devastated hives on the Isle of Wight, a British island in the middle of the English Channel. The disease wiped out nearly all the hives on the island, then jumped to the British mainland, where it also wreaked havoc. Not until 1921 did a Dr. J. Rennie identify the tracheal mite as the culprit responsible for the losses. It was the world’s first known mite infestation—though not the last. In 1922, the United States prohibited the importation of honey bees, managing to forestall the arrival of the mite for more than sixty years—but also isolating the gene pool of American bees and making them more vulnerable to those pathogens that inevitably did arrive.

  And arrive they did. They came in trickles; they came in waves; they came in tsunamis; they came and kept coming. There came the imported red fire ants, which are native to South Africa and arrived in Mobile, Alabama, sometime in the 1930s aboard a Brazilian cargo ship. The ants now infest most of the southern and southwestern United States, overrunning colonies, driving bees away, and eating everything in the hive, then moving on to destroy nearby crops. There came chalkbrood, a fungal disease that leapt from Europe to the States in the mid-1960s. Chalkbrood preys on the brood in weakened hives, leaving behind chalky white discarded “mummies” scattered at the entrance. There came tracheal mites and varroa mites, the twin parasitic curses from the 1980s onward. There came Africanized bees, bred in Brazil by accident in 1953. In 1990 they crossed the U.S. border, invading hives, interbreeding with Europea
n bees, and creating more aggressive offspring. There came small hive beetles, which aren’t all that small. Little black pellet-like insects, they arrived in the United States from South Africa in 1998. They eat their way through a colony’s larvae, pollen, and honey, defecating every inch of the way, leaving in their wake a foul, gelatinous goo—a “violent ooze,” as one of Miller’s friends once described it.

  There came “crazy Rasberry ants,” named after Tom Rasberry, the exterminator who figured out how to kill them—not an easy task because the ants, which eschew typical regimental ant columns, pile the dead over areas where pesticides have been applied and march to safe haven. Crazy Rasberry ants first debarked at a Houston port in 2002 and by 2008 had doubled their range, gumming up fire alarms, sewage pumps, computers, and gas meters and inflicting grave damage on beehives, where the ants dine on larvae and move into the collapsed hives to lay eggs. There came sinister-sounding pathogens like Kashmir bee virus and Israeli acute paralysis virus and black queen cell virus and deformed wing virus and Kakugo virus, which infests bee brains and makes them unusually aggressive. All were identified only recently. Bad things have been invading beehives for a long, long time. But in the last thirty years, they have come faster and faster, in wave after breathless wave. For that, we have the almond to thank.

  JOHN MILLER FIRST TOOK HIS DAD’S BEES TO A CALIFORNIA almond orchard in 1974. Before then, the family had overwintered its colonies in Idaho, lining the hives up on a gentle south slope, clustering them together six hives per stand, enrobing them in straw, tarpaper, and chicken wire to protect them from north and west winds, and hoping for snow to further bury and insulate the bees. In late March, after winter’s worst months had passed, the Millers would remove the packing, “discover 10,000 mice also enjoy the straw insulation; occasionally discover a skunk,” John Miller wrote. In a normal year, they could expect a 2 to 4 percent loss over the winter; to replace dead colonies, they’d drive their GMC 5500 flatbed through Nevada to Live Oak, California, where they’d pick up five hundred three-pound packages of bees and queens from a guy named Eugene Walker.

 

‹ Prev