Book Read Free

Biocentrism: How Life and Consciousness Are the Keys to Understanding the True Nature of the Universe

Page 11

by Robert Lanza


  “Name the colors, blind the eye” is an old Zen saying, illustrating that the intellect’s habitual ways of branding and labeling creates a terrible experiential loss by displacing the vibrant, living reality with a steady stream of labels. It is the same way with space, which is solely the conceptual mind’s way of clearing its throat, of pausing between identified symbols.

  At any rate, the subjective truth of this is now supported by actual experiments (as we saw in the quantum theory chapters) that strongly suggest distance (space) has no reality whatsoever for entangled particles, no matter how great their apparent separation.

  The Eternal Seas of Space and Time?

  Einstein’s relativity, too, has shown that space is not a constant, not absolute, and therefore not inherently substantive. By this, we mean that extremely high speed travel makes intervening space essentially shrink to nothingness. Thus, when we step out under the stars, we may marvel at how far away they are, and at how vast are the spaces within the universe, but it has been shown repeatedly, for a full century now, that this seeming separation between ourselves and anything else is subject to point of view and therefore has no inherent bedrock reality. This doesn’t by itself totally negate space but merely makes it tentative. If we lived on a world with a very strong gravitational field or traveled outbound at a high speed, those stars would lie at an entirely different distance. To use real figures, if we headed toward the star Sirius at 99 percent of light’s speed of 186,282.4 miles per second, we would find that it was barely more than one light-year away, and not the 8.6 light-years our friends back on Earth measure it to be. If we crossed a living room twenty-one feet in length going at that speed, every instrument and perception would show that it was actually now three feet in length. Here’s the amazing thing: the living room, and the intervening space from Earth to Sirius, is now not artificially shrunk by some illusion. The star is that far away. The living room is only three feet across. And if we could move at 99.9999999 percent of lightspeed, which is perfectly allowable by the laws of physics, the living room would now be 1/22,361th its original size or just a hundredth of an inch across—barely larger than the period at the end of this sentence. All items, furniture, or people in the room would be likewise Lilliputian, and yet we’d notice nothing amiss. Space would have changed to nearly nothing. Where, then, is that supposedly trustworthy gridwork within which we place our habitually established “things”?

  Actually, the first clues that space may be more curious and iffy than anyone had imagined came in the nineteenth century, when physicists assumed, just as most still do, that space and time have an external, independent existence that is independent of consciousness.

  This takes us to the man most associated with the contemplation of space. As we’ll see, the genius of Einstein has a dimension that goes beyond his relativity theories of 1905 and 1915. For the extraordinary timing of history placed him, at the start of his career, at a time when the foundations of Western natural philosophy were on the verge of crisis and confusion. Quantum theory was still years off in the future, and there was a surprising lack of understanding of the interaction between the observer and the phenomenon observed.

  The generation to which Einstein belonged had been taught that there existed an objective physical world that unfolded itself according to laws independent of life. “The belief in an external world independent of the perceiving subject,” Einstein later wrote, “is the basis of all natural science.” The universe was viewed as a great machine set in motion at the beginning of time, with wheels and cogs that turned according to immutable laws independent of us. “Everything is determined, the beginning as well as the end, by forces over which we have no control. It is determined for the insect as well as for the star. Human beings, vegetables, or cosmic dust, we all dance to a mysterious tune, intoned in the distance by an invisible piper.”

  Of course, this notion is not, as science has subsequently discovered, in agreement with the experimental findings of quantum theory. Reality—according to the most stringent interpretation of the scientific data—is created by or at least correlative with the observer. It is in this light that natural philosophy needs now to be reinterpreted, with science placing a new emphasis on those special properties of life that make it fundamental to material reality. Yet even back then in the eighteenth century, Immanuel Kant, ahead of his time, said that “we must rid ourselves of the notion that space and time are actual qualities in things in themselves . . . all bodies, together with the space in which they are, must be considered nothing but mere representations in us, and exist nowhere but in our thoughts.”

  Biocentrism, of course, shows that space is a projection from inside our minds, where experience begins. It is a tool of life, the form of outer sense that allows an organism to coordinate sensory information, and to make judgments regarding the quality and intensity of what is being perceived. Space is not a physical phenomenon per se—and should not be studied in the same way as chemicals and moving particles. We animal organisms use this form of perception to organize our sensations into outer experience. In biological terms, the interpretation of sensory input in the brain depends on the neural pathway it takes from the body. For instance, all information arriving on the optic nerve is interpreted as light, whereas the localization of a sensation to a particular part of the body depends on the particular pathway it takes to the central nervous system.

  “Space,” said Einstein, refusing to let metaphysical thinking interfere with his equations, “is what we measure with a measuring rod.” But, once again, this definition should emphasize the we. For what is space if not for the observer? Space is not merely a container without walls. It is pertinent to ask what would be left if all objects and life were removed. Where would space be then? What would define its borders? It is inconceivable to think of anything existing in the physical world without any substance or end. It is metaphysical vacuity for science to ascribe independent reality to truly empty space.

  Yet another way of appreciating the vacuity of space (yes, that’s a joke) is the modern finding that seeming emptiness seethes with almost unimaginable energy, which manifests as virtual particles of physical matter, jumping in and out of reality like trained fleas. The seemingly empty matrix upon which the storybook of reality is set is actually a living, animated “field,” a powerful entity that is anything but empty. Sometimes called Z-point energy, it starts to show itself when the all-pervasive kinetic energies around us have quieted to a stop at the temperature of absolute zero, at -459.67°F. Z-point or vacuum energy has been experimentally confirmed since 1949 via the Casimir effect, which causes closely spaced metal plates to become powerfully pressed together by the waves of vacuum energy outside them. (The tiny space between the plates stifles the energy waves by leaving them insufficient “breathing room” to push back against the force.)

  So we have multiple illusions and processes that routinely impart a false view of space. Shall we count the ways? (1) Empty space is not empty. (2) Distances between objects can and do mutate depending on a multitude of conditions, so that no bedrock distance exists anywhere, between anything and anything else. (3) Quantum theory casts serious doubt about whether even distant individual items are truly separated at all. (4) We “see” separations between objects only because we have been conditioned and trained, through language and convention, to draw boundaries.

  Ever since the remotest of times, philosophers have been intrigued by object and background, like those illusions in which one can see either a fancy wine glass or two profiled faces looking at each other. It is the same way with space, objects, and the observer.

  Now, space and time illusions are certainly harmless. A problem only arises because, by treating space as something physical, existing in itself, science imparts a completely wrong starting point for investigations into the nature of reality, or in the current obsession with trying to create a Grand Unified Theory that truly explains the cosmos.

  Early Space Probes: The
Nineteenth-Century Pioneers

  “It seems,” wrote Hume, “that men are carried by a natural instinct or prepossession to repose faith in their senses, and that without any reasoning, or even almost before the use of reason, we always suppose an external universe which depends not on our perception but would exist though we and every creature were absent or annihilated.”

  The physical qualities that the physicists had bestowed upon space, of course, could not possibly be found. But that didn’t stop them from trying. The most famous attempt was the Michelson- Morley experiment, designed in 1887 to resolve any doubt about the existence of the “ether.” When Einstein was very young, scientists thought this ether pervaded and defined space. The ancient Greeks had detested the notion of nothingness: being excellent and obsessive logicians, they were fully aware of the contradiction built into the idea of being nothing. Being, the verb to be, patently contradicts nothing and putting the two together was like saying you were going to walk not walk. Even before the nineteenth century, scientists, too, believed that something had to exist between the planets, or else light would have no substance through which to fly. Although earlier attempts to demonstrate the presence of this supposed ether had proved unsuccessful, Albert Michelson argued that if the Earth was streaming through the ether, then a beam of light traveling through the medium in the same direction should reflect back faster than a similar beam of light at right angles to the direction of Earth’s flight.

  With the help of Edward Morley, Michelson made the test, with the apparatus attached to a firm concrete platform floating atop a generous pool of liquid mercury. The multiple-mirror device could be readily rotated without introducing unwanted tilt. The results were incontrovertible: the light that traveled back and forth across the “ether stream” accomplished the journey in exactly the same time as light traveling the same distance up and down the “ether stream.” It seemed as if the Earth had stalled in its orbit round the Sun, as if to preserve Ptolemy’s natural Greek philosophy. But to renounce the whole Copernican theory was unthinkable. To assume that the ether was carried along with the Earth also made no sense at all and had already been ruled out by a number of experiments.

  Of course, there was no ether; space has no physical properties. “Knowledge,” Henry David Thoreau once said, “does not come to us by details, but in flashes of light from heaven.” It took several years for George Fitzgerald—using not heaven but the rapture of properly applied logic—to point out that there was another explanation for the negative results of the Michelson-Morley experiment. He suggested that matter itself contracts along the axis of its motion, and that the amount of contraction increases with the rate of motion. For instance, an object moving forward would be slightly shorter than it was at rest. Michelson’s apparatus—indeed, all measuring devices, including the human sense organs—would adjust themselves in the same way, contracting as they were turned into the direction of the Earth’s motion.

  At first, this hypothesis suffered from the lack of any credible explanation—always a deficiency in science if not in politics—until the great Dutch physicist Hendrik Lorentz invoked electromagnetism. Lorentz had been one of the first to postulate the existence of the electron, leading to its discovery in 1897 as the very first subatomic particle, and still one of only three deemed to be fundamental or indivisible. He was considered by many theoretical physicists, including Einstein, as the leading mind among them. It was Lorentz’s belief that the contraction phenomenon was a dynamic effect, and that the molecular forces in an object in motion differ from those from an object at rest. He reasoned that if an object with its electrical charges were moved through space, its particles would assume new relative distances from one another. The result would be a change in the object’s shape, which would contract in the direction of its motion.

  Lorentz developed a set of equations that later became known as the Lorentz transformation (or Lorentz Contraction—see Appendix 1) to describe events taking place in one frame of reference in terms of a different one. This transformation equation was so simple and beautiful that it was utilized in its entirety by Einstein for his 1905 Special Relativity theory. Indeed, it embodies the whole mathematical essence of Einstein’s special theory of relativity, not only succeeding in quantifying the contraction hypothesis, but also presenting, before the invention of the relativity theory, the right equation for the increase in mass of a moving particle.

  Unlike changes in length, the change in mass of an electron can be determined from its deflection by a magnetic field. By 1900, Walter Kauffman had verified that an electron’s mass increased just as predicted by Lorentz’s equations. In fact, subsequent experiments show Lorentz’s equations to be well-nigh perfect.

  Although Poincaré had discovered the relativity principle, and Lorentz the formula for change, the time was ripe for Einstein to reap this harvest. It was in this special relativity theory that the full implications of the space-time transformation laws were laid out clearly: clocks really do slow down when they move, and very much so when they move at velocities that approach the speed of light. At 586 million miles per hour, for instance, a clock would run half as fast as when at rest. And at the speed of light—670 million miles per hour—a clock would stop completely. The actual, everyday consequences of this may seem perceptually ungraspable, for nobody is sensitive enough to detect the extremely minute changes that occur in clocks and measuring rods at the level of ordinary life. Even in a rocket hurtling through space at 60 million miles per hour, a clock would only slow by less than 0.5 percent.

  The equations in Einstein’s theory of relativity, building on the equations of Lorentz, predicted all the remarkable effects of motion at high speeds. They described a world that few could imagine, even at a time when the prevailing fiction included fantastic works from fertile minds such as H.G. Wells, the author of The Time Machine.

  Experiment after experiment appear to bear Einstein’s ideas out. His equations have been checked, cross-checked, and counterchecked. In fact, there are whole technologies that depend on them. The focusing of the electron microscope is one. The design of the klystron, the electronic tube that supplies microwave power to radar systems, is another.

  Both relativity and the biocentric theory presented in this book (which prefers the dynamic “compensatory theory” suggested by Lorentz) predict the same phenomena. It is not possible to choose one theory over the other based on the observational facts. “One must choose relativity over the compensatory [biocentric] alternatives,” wrote Lawrence Sklar, one of the world’s leading philosophers of science, “as a matter of free choice.” But it is not necessary to jettison Einstein in order to restore space and time to their place as means by which we animals and humans intuit ourselves. They belong to us, not to the physical world. There is no necessity to create new dimensions and invent an entirely new mathematics to explain why space and time are relative to the observer.

  However, this equi-compatibility does not pertain to all natural phenomena. When applied immediately to spaces of a submolecular order of magnitude, Einstein’s theory breaks down altogether. In the relativity theory, motion is described in the context of a four-dimensional continuum of space-time. Therefore, using it alone, it should have been possible to determine both position and momentum or energy and time simultaneously with unlimited accuracy—a conclusion that wound up being inconsistent with the limits imposed by the uncertainty principle.

  Einstein’s interpretation of nature was designed to explain paradoxes accrued by motion and the presence of gravitational fields. They make no philosophical statement about whether or not space or time exists absent an observer. They would work as well if the matrix of the traveling particle or bit of light were a field of consciousness as in a field of total nothingness.

  But no matter how we regard mathematical conveniences for calculating motion, space and time remain properties of the perceiving organism. It is solely from the viewpoint of life that we can speak of them, despite the p
opular view of space-time of special relativity existing as a self-sustaining entity having independent existence and structure.

  Moreover, it is only with considerable hindsight that we now realize that Einstein merely substituted a 4D absolute external entity for a 3D absolute external entity. In fact, at the beginning of his paper on general relativity, Einstein raised the same concern about his own theory of special relativity. Einstein had ascribed objective reality to space-time independent of occupation of whatever events happen to take place in its arena. His concern—abandoned because he could not take it further—would no doubt resonate with him today if he were alive. After all, his one consistent spiritual viewpoint, repeated over and over, was that “there is no free will,” the invariable consequence of which is a universe that is self-operating, and on down that slippery slope we go until dualism and ego-independence, and isolated compartments for consciousness and an external cosmos, become untenable. In truth, there can be no break between the observer and the observed. If the two are split, the reality is gone.

  Einstein’s work, as it stood, was superb for calculating trajectories and determining the relative passage of the sequencing of events. He made no attempt to elucidate the actual nature of time and space, because these cannot be explained by physical laws. For that, we must first learn how we perceive and imagine the world around us.

  Indeed, how do we see things when in fact the brain is locked inside the cranium, inside a sealed vault of bone? That this whole rich and brilliant universe comes from a quarter-inch opening of the pupil, and the faint bit of light that gains entry thereby? How does it turn some electrochemical impulses into an order, a sequence, and a unity? How can we cognize this page, or a face, or anything that appears so real that very few ever stop to question how it occurs? Obviously, it is outside traditional physics to discover that these perpetual images that surround us so vividly are a construction, a finished product hovering inside the head.

 

‹ Prev