Book Read Free

Out of My Later Years: The Scientist, Philosopher, and Man Portrayed Through His Own Words

Page 20

by Albert Einstein


  Once Copernicus had convinced the small group capable of grasping it that in this process the sun must be regarded as being at rest, with the planets, including the earth, revolving about the sun, the first great problem proved to be this: to determine the true motions of the planets, including the earth, as they might be visible to an observer on the nearest fixed star who was equipped with a perfect stereoscopic double-telescope. This was Kepler’s first great problem. The second problem was embodied in this question: What are the mathematical laws under which these motions proceed? It is plain that the solution of the second problem, if at all within reach of the human mind, was predicated on the solution of the first. Before a theory explaining a certain process can be tested, that process must first be known.

  Kepler’s solution of the first problem is based on a truly inspired notion that made possible the determination of the true orbit of the earth. To construct that orbit, a second fixed point in planetary space, in addition to the sun, is required. When such a second point is available, it and the sun may both be used as points of reference for angular measurements, and the earth’s true orbit can be determined by the same methods of triangulation that customarily serve in surveying and cartography.

  But where was such a second fixed point to be found, since all visible objects, except the sun, themselves execute motions that are not known in detail? This was Kepler’s answer: The apparent motions of the planet Mars are known with great accuracy, including the time of its revolution about the sun (the “Martian year”). It is probable that at the end of each Martian year Mars is at the same spot in (planetary) space. If we limit ourselves for the time being to these points in time, then the planet Mars represents for them a fixed point in planetary space, a point that may be used in triangulation.

  Employing this principle, Kepler first of all determined the true motion of the earth in planetary space. Since the earth itself may be used as a point for triangulation at any time, he was also able to determine the true motions of the other planets from his observations.

  This is how Kepler gained the basis for formulating the three fundamental laws with which his name will remain associated for all time to come. Today, after the fact, no one can fully appreciate how much ingenuity, how much hard and tireless work was required to discover these laws and ascertain them with such precision.

  The reader ought to know this as he learns from the letters under what hardships Kepler accomplished this gigantic work. He refused to be paralyzed or discouraged either by poverty or by the lack of comprehension among those of his contemporaries who had the power to shape his life and work. Yet he was dealing with a subject that offered immediate danger to him who professed the truth. But Kepler was one of the few who are simply incapable of doing anything but stand up openly for their convictions in every field. At the same time he was not one who took undiluted pleasure in personal controversy, as was plainly the case with Galileo, whose inspired barbs delight the informed reader even today. Kepler was a devout Protestant, but he made no secret of the fact that he did not approve of all decisions by the Church. He was, accordingly, regarded as a kind of moderate heretic and treated as such.

  This brings me to the inner difficulties Kepler had to overcome—difficulties at which I have already hinted. They are not as readily perceived as the outward difficulties. Kepler’s lifework was possible only once he succeeded in freeing himself to a great extent of the intellectual traditions into which he was born. This meant not merely the religious tradition, based on the authority of the Church, but general concepts on the nature and limitations of action within the universe and the human sphere, as well as notions of the relative importance of thought and experience in science.

  He had to rid himself of the animist approach in research, a mode of thought oriented toward ulterior ends. He first had to recognize that even the most lucidly logical mathematical theory was of itself no guarantee of truth, becoming meaningless unless it was checked against the most exacting observations in natural science. But for this philosophical orientation Kepler’s work would not have been possible. He does not speak of it, but the inner struggle is reflected in his letters. Let the reader watch out for remarks concerning astrology. They show that the vanquished inner foe had been rendered harmless, even though he was not yet altogether dead.

  40

  Marie Curie in Memoriam

  AT A TIME WHEN a towering personality like Mme. Curie has come to the end of her life, let us not merely rest content with recalling what she has given to mankind in the fruits of her work. It is the moral qualities of its leading personalities that are perhaps of even greater significance for a generation and for the course of history than purely intellectual accomplishments. Even these latter are, to a far greater degree than is commonly credited, dependent on the stature of character.

  It was my good fortune to be linked with Mme. Curie through twenty years of sublime and unclouded friendship. I came to admire her human grandeur to an ever growing degree. Her strength, her purity of will, her austerity toward herself, her objectivity, her incorruptible judgment—all these were of a kind seldom found joined in a single individual. She felt herself at every moment to be a servant of society and her profound modesty never left any room for complacency. She was oppressed by an abiding sense for the asperities and inequities of society. This is what gave her that severe outward aspect, so easily misinterpreted by those who were not close to her—a curious severity unrelieved by any artistic strain. Once she had recognized a certain way as the right one, she pursued it without compromise and with extreme tenacity.

  The greatest scientific deed of her life—proving the existence of radioactive elements and isolating them—owes its accomplishment not merely to bold intuition but to a devotion and tenacity in execution under the most extreme hardships imaginable, such as the history of experimental science has not often witnessed.

  If but a small part of Mme. Curie’s strength of character and devotion were alive in Europe’s intellectuals, Europe would face a brighter future.

  41

  Max Planck in Memoriam

  A MAN TO WHOM it has been given to bless the world with a great creative idea has no need for the praise of posterity. His very achievement has already conferred a higher boon upon him.

  Yet it is good—indeed, it is indispensable—that representatives of all who strive for truth and knowledge should be gathered here today from the four corners of the globe. They are here to bear witness that even in these times of ours, when political passion and brute force hang like swords over the anguished and fearful heads of men, the standard of our ideal search for truth is being held aloft undimmed. This ideal, a bond forever uniting scientists of all times and in all places, was embodied with rare completeness in Max Planck.

  Even the Greeks had already conceived the atomistic nature of matter and the concept was raised to a high degree of probability by the scientists of the nineteenth century. But it was Planck’s law of radiation that yielded the first exact determination—independent of other assumptions—of the absolute magnitudes of atoms. More than that, he showed convincingly that in addition to the atomistic structure of matter there is a kind of atomistic structure to energy, governed by the universal constant h, which was introduced by Planck.

  This discovery became the basis of all twentieth-century research in physics and has almost entirely conditioned its development ever since. Without this discovery it would not have been possible to establish a workable theory of molecules and atoms and the energy processes that govern their transformations. Moreover, it has shattered the whole framework of classical mechanics and electrodynamics and set science a fresh task: that of finding a new conceptual basis for all physics. Despite remarkable partial gains, the problem is still far from a satisfactory solution.

  In paying homage to this man the American National Academy of Sciences expresses its hope that free research, for the sake of pure knowledge, may remain unhampered and unimpaired.


  42

  Paul Langevin in Memoriam

  THE NEWS OF Paul Langevin’s death dealt me a greater blow than most of the events of these fateful years, so fraught with disappointment. Why should this have been the case? Was his not a long life, crowded with fruitful creative work—the life of a man in harmony with himself? Was he not widely revered for his keen insight into intellectual problems, universally beloved for his devotion to every good cause, for his understanding kindness toward all creatures? Is there not a certain satisfaction in the fact that natural limits are set to the life of the individual, so that at its conclusion it may appear as a work of art?

  The sorrow brought on by Paul Langevin’s passing has been so particularly poignant because it has given me a feeling of being left utterly alone and desolate. There are so very few in any one generation, in whom clear insight into the nature of things is joined with an intense feeling for the challenge of true humanity and the capacity for militant action. When such a man departs, he leaves a gap that seems unbearable to his survivors.

  Langevin was endowed with unusual clarity and agility in scientific thought, together with a sure intuitive vision for the essential points. It was as a result of these qualities that his lectures exerted a crucial influence on more than one generation of French theoretical physicists. But Langevin also knew a great deal about experimental technique and his criticism and constructive suggestions always carried a fruitful effect. His own original researches, moreover, decisively influenced the development of science, mainly in the fields of magnetism and ion theory. Yet the burden of responsibility which he was always ready to assume circumscribed his own research work, so that the fruits of his labors emerge in the publications of other scientists to a greater extent than in his own.

  It appears to me as a foregone conclusion that he would have developed the Special Theory of Relativity, had that not been done elsewhere; for he had clearly perceived its essential aspects. Another admirable thing is that he fully appreciated the significance of De Broglie’s ideas—from which Schrödinger subsequently developed the methods of wave mechanics—even before these ideas had become consolidated into a consistent theory. I vividly recall the pleasure and warmth with which he told me about it—and I also remember that I followed his remarks but hesitantly and doubtfully.

  All his life Langevin suffered from an awareness of the deficiencies and inequities of our social and economic institutions. Yet he believed firmly in the power of reason and knowledge. So pure in heart was he that he was convinced all men should be ready for complete personal renunciation, once they had seen the light of reason and justice. Reason was his creed—a creed that was to bring not only light but also salvation. His desire to promote the happier life for all men was perhaps even stronger than his craving for pure intellectual enlightenment Thus it was that he devoted much of his time and vital energy to political enlightenment No one who appealed to his social conscience ever went away from him empty-handed. Thus it was too that the very moral grandeur of his personality earned him the bitter enmity of many of the more humdrum intellectuals. He in turn understood them all and in his kindness never harbored resentment against anyone.

  I can only give expression to my gratitude for having personally known this man of purity and illumination.

  43

  Walther Nernst in Memoriam

  WALTHER NERNST, WHO DIED recently, was one of the most characteristic and most interesting scholars with whom I have been closely connected during my life. He did not miss any of the conferences on physics in Berlin, and his brief remarks gave evidence of a truly amazing scientific instinct combined both with a sovereign knowledge of an enormous volume of factual materials, which was always at his command, and with a rare mastery of the experimental methods and tricks in which he excelled. Although sometimes good-naturedly smiling at his childlike vanity and self-complacency, we all had for him not only a sincere admiration, but also a personal affection. So long as his egocentric weakness did not enter the picture, he exhibited an objectivity very rarely found, an infallible sense for the essential, and a genuine passion for knowledge of the deep interrelations of nature. But for such a passion his singularly creative productivity and his important influence on the scientific life of the first third of this century would not have been possible.

  He ascended from Arrhenius, Ostwald and Van’t Hoff, as the last of a dynasty which based their investigations on thermodynamics, osmotic pressure and ionic theory. Up to 1905 his work was essentially restricted to that range of ideas. His theoretical equipment was somewhat elementary, but he mastered it with a rare ingenuity. I refer, for instance, to the theory of electromotive powers in solutions of locally variable concentration, the theory of diminution of the solubility by adding a dissolved substance. During this period he invented the witty null-method of determining the dielectric constant of electrically conducting bodies by means of Wheatstone’s Bridge (alternating current, telephone as indicator, compensating capacity in comparison-bridge branches).

  This first productive period is largely concerned with improving the methodology and completing the exploration of a field the principles of which had already been known before Nernst. This work led him gradually to a general problem which is characterized by the question: Is it possible to compute from the known energy of the conditions of a system, the useful work which is to be gained by its transition from one state into another? Nernst realized that a theoretical determination of the transition work A from the energy-difference U by means of equations of thermodynamics alone is not possible. There could be inferred from thermodynamics that, at absolute zero, the temperature of the quantities A and U must be equal. But one could not derive A from U for any arbitrary temperatures, even if the energy-values or differences in U were known for all conditions. This computation was not possible until there was introduced, with regard to the reaction of these quantities under low temperatures, an assumption which appeared obvious because of its simplicity. This assumption is simply that A becomes temperature-independent under low temperatures. The introduction of this assumption as a hypothesis (third main principle of the theory of heat) is Nernst’s greatest contribution to theoretical science. Planck found later a solution which is theoretically more satisfactory; namely, the entropy disappears at absolute zero temperature.

  From the standpoint of the older ideas on heat, this third main principle required very strange reactions of bodies under low temperatures. To pass upon the correctness of this principle, the methods of calorimetry under low temperatures had to be greatly improved. The calorimetry of high temperatures also owes to Nernst considerable progress. Through all these investigations, as well as through many stimulating suggestions with which his untiring inventive genius supplied experimenters in his field, he promoted the research work of his generation most effectively. The beginnings of the quantum theory were assisted by the important results of those caloric investigations, and this especially before Bohr’s theory of the atom made spectroscopy the most important experimental field. Nernst’s standard work, “Theoretical Chemistry,” offers, not only to the student but also to the scholar, an abundance of stimulating ideas; it is theoretically elementary, but clever, vivid and full of intimations of manifold interrelations. It truly reflects his intellectual characteristics.

  Nernst was not a one-sided scholar. His sound common sense engaged successfully in all fields of practical life, and every conversation with him brought something interesting to light. What distinguished him from almost all his fellow-countrymen was his remarkable freedom from prejudices. He was neither a nationalist nor a militarist. He judged things and people almost exclusively by their direct success, not by a social or ethical ideal. This was a consequence of his freedom from prejudices. At the same time he was interested in literature and had such a sense of humor as is very seldom found with men who carry so heavy a load of work. He was an original personality; I have never met any one who resembled him in any essential way.

&nbs
p; 44

  Paul Ehrenfest in Memoriam

  IT HAPPENS SO often nowadays that men of high qualities depart this life of their own free will that we no longer feel such a conclusion to be unusual. Yet the decision to take leave generally stems from an incapacity—or at least an unwillingness—to resign oneself to new and more difficult outward conditions of life. To refuse to live out one’s natural life because of inner conflicts that are felt to be intolerable—that is even today in persons of sound mind a rare occurrence, possible only in the case of the noblest and morally most exalted personalities. It is to such a tragic inner conflict that our friend Paul Ehrenfest has succumbed. Those who knew him well, as was vouchsafed to me, know that this unblemished personality in the main fell victim to a conflict of conscience that in some form or other is spared no university teacher who has passed, say, his fiftieth year.

  I came to know him twenty-two years ago. He visited me in Prague, coming straight from Russia where he as a Jew was debarred from teaching at institutions of higher learning. He was looking for a sphere of work in central or western Europe. But we talked little of that, for it was the state of science at the time that took up almost all of our interest. Both of us realized that classical mechanics and the theory of the electric field had failed in the face of the phenomena of heat radiation and molecular processes (the statistical theory of heat), but there seemed to be no feasible way out of this dilemma. The logical gap in Planck’s Theory of Radiation—which we both, nevertheless, greatly admired—was apparent to us. We also discussed the Theory of Relativity, to which he responded with a certain skepticism but with the critical judgment peculiar to him. Within a few hours we were true friends—as though our dreams and aspirations were meant for each other. We remained joined in close friendship until he departed this life.

 

‹ Prev