Book Read Free

The King of Infinite Space

Page 12

by David Berlinski


  Explicit (word), 149

  Fields, 103–106, 112, 113, 118, 142

  Flatness, 38–39, 40–41

  Flaubert, Gustave, 1

  Forms (Platonic), 13, 60, 145

  Four-color theorem, 151

  Fractions. See under Numbers

  Friedman, Harvey, 46

  Galois, Évariste, 142

  Gauss, Carl Friedrich, 41, 48, 92, 93, 118, 122, 126, 127

  Gelfand, I. M., 99

  Geodesics, 125, 126, 137

  Geometry, 5, 6, 12, 80, 83, 112

  analytic geometry, 96–97, 98–100, 108, 109, 110, 115

  classification of geometries, 140–142

  concrete vs. abstract models of, 13–14, 28–29

  differential geometry, 41

  elliptical geometry, 141

  Euclidean geometry as first theory, 108, 152

  hyperbolic geometry, 139, 141

  neutral geometry, 122, 131

  new axiom system for, 107

  non-Euclidean geometries, 8, 106, 118, 121, 123, 124–141

  projective geometry, 141

  revising Euclidean geometry, 51–52

  solid geometry, 7

  spherical geometry, 125

  unity of geometry and arithmetic, 69, 71, 91, 92, 95, 110, 111, 153–154

  Geometry, Euclid and Beyond (Hartshorne), 47

  Glagoleva, E. G., 99

  Gödel, Kurt, 150

  Greeks (ancient), 8, 14, 15, 120, 148

  Groups, 142–145, 151

  Grundlagen der Geometrie (Hilbert), 106, 107, 108, 110, 111

  Guthrie, Francis, 150–151

  Hadamard, Jacques, 27

  Haken, Wolfgang, 151

  Haldane, J. B. S., 124

  Hardy, G. H., 77

  Hartshorne, Robin, 47

  Haytham, Ibn al, 120

  Hilbert, David, 13, 27, 34, 52, 80, 106–115

  Homeric epics, 148

  Horace, 39

  Hyperbola, 99

  Hyperbolic plane. See under Planes

  Hypotenuse, 69, 100. See also Pythagorean theorem

  Identity, 25, 50–51, 68, 142, 144

  of a point and pair of numbers, 112 (see also Points: point as pair of numbers)

  between shapes and numbers, 153

  Inference, 15, 17, 19, 43, 44, 49, 123

  rules of inference, 90

  Infinite regress, 32

  Infinity, 38, 49, 87, 132, 134, 137

  natural numbers as potentially infinite, 92–93

  Intuition, 22, 45, 53, 54, 82

  Inverse relationship, 81(n), 82, 83, 105, 142, 143, 144

  Isometry, 144

  James, Henry, 117

  Johnson, Samuel, 33, 147

  Joyce, D. E., 62

  Judt, Tony, 4

  Jupiter and Antiope (painting), 77–78, 79, 82, 87

  Kant, Immanuel, 117

  Kazan, University of, 128–129

  Kazan Messenger, The, 129, 132

  Kirillov, A. A., 99

  Klein, Felix, 140

  Kline, Morris, 34

  La Géométrie (Descartes), 96

  Latitude/longitude, 3

  Leçons de géométrie élémentaire (Hadamard), 27

  Length, 22–23, 33, 35, 36, 159

  Libri Decem (Vitruvius Pollio), 1

  Lines, 79, 111

  curved lines, 137 (see also Curvature)

  existence of, 107

  hyperbolic lines, 134, 135

  line segments, 95, 110–111

  parallel lines, 34, 84, 84(n), 88, 89–90, 125, 130, 138, 161

  straight lines, 7, 13, 14, 22, 23, 25, 33, 34, 37, 38, 39, 43, 46, 48, 50, 52, 53, 60, 61, 62, 63, 66, 73, 80–81, 95, 98, 112, 113, 135, 137, 143, 159, 160, 161

  straight lines as ratio of three numbers, 112, 113

  Lobachevsky, Nicolai, 118, 122–123, 126, 128–131, 133, 139

  Logic, 2, 12, 23, 34, 53, 54, 59, 65, 80, 82, 83, 90, 107, 108, 119

  of relationships, 24

  See also Syllogisms

  Magnitudes, 7, 94

  Mallory, George, 58–59

  Mathematical Thought from Ancient to Modern Times (Kline), 34

  Mathematics, 2–3, 7, 12, 41, 83, 151

  as doubtful, 123

  mathematical physics, 144

  and mountain-climbing pastoral, 57

  Measurements/mensuration, 11

  Middle Ages, 80

  Mirror images, 68

  Models, 13–14, 108

  Modus ponens, 17, 82

  Moise, Edwin, 94

  Monet, Claude, 152

  Morality, 58, 156

  Mordell, Louis Joel, 57

  Morley, Frank, 147

  Motion, 25, 26, 27, 28, 29, 63, 143

  as impossible, 43

  power of geometrical objects to move or be moved, 36, 37, 39, 52, 68, 95, 145

  rigid body moves, 144

  ways of moving in a plane, 37

  Mountain-climbing pastoral, 57–58

  Mount Everest, 58

  Multiplication, 103, 104, 110, 112

  Newton, Isaac, 47

  Non-Euclidean geometries. See under Geometry

  Nothing, 41, 42, 43–44

  Notices of the American Mathematical Society, 150

  Numbers, 3, 7, 12, 17, 29, 30, 69, 145, 153

  and distances, 23

  fractions, 38, 94, 102, 103

  geometrical properties of numerals, 92

  greatest/least numbers, 109

  identifying points in space, 36

  irrational numbers, 102

  natural numbers, 91–92, 92–93, 95, 101

  natural numbers as potentially infinite, 92–93

  negative numbers, 101–102, 103, 142

  new numbers, 101–102

  number as multitude composed of units, 93

  and points, 109 (see also Points: point as pair of numbers)

  prime numbers, 100

  rational numbers, 94, 109

  real numbers, 94, 103, 105–106, 109, 110, 111, 112

  Roman numerals, 4

  sets of numbers, 111–112

  squaring/square roots of, 70, 72, 100, 101, 102, 103, 110, 135–136

  zero, 101, 103, 104, 143

  Oblongs, 161

  Omar Khayyám, 120–121

  On Nature (Parmenides), 42

  Paintings, 77–79, 140

  Pappus, 68

  Papyrus, 8

  Parabola, 98

  Paradoxes, 38

  Parallelism, 53, 56, 74, 74(n), 81, 87. See also Lines: parallel lines; Parallel postulate

  Parallelograms, 74, 74(n), 75

  Parallel postulate, 81(n), 117–124

  denial/failure of, 118, 120, 123, 131, 137, 139–140

  and Pythagorean theorem, 119

  See also Axioms: fifth axiom

  Parmenides, 42–43, 44

  Parts, 34–35, 42

  whole as greater than the part, 21, 29–30

  Pasch, Moritz, 34

  Peirce, C. S., 23

  Perspective (in paintings), 141–142

  Peyrard, François, 8

  Planes, 14, 33, 38, 39, 40, 41, 94, 96–97, 108, 111, 112, 138, 143, 144, 152

  defined, 35–36, 159

  degrees of freedom of, 37

  existence of, 107

  hyperbolic plane, 129–130, 130(fig.), 134, 135, 137

  projective plane, 141–142

  Plato, 5, 13, 60, 95, 145

  Playfair, Francis, 53–54. See also Axioms: Playfair’s axiom

  Poincaré, Henri, 134

  dictionary of, 138–139

  Poincaré disk, 134–138, 135(fig.)

  Points, 3, 7, 13, 33, 37, 53, 87, 111

  vs. atoms, 42, 43

  “between two points,” 14, 41, 43, 44, 46, 48, 50, 61, 62, 70, 95, 124–125, 126, 135, 137

  and continuity, 44

  defined, 34, 35, 159

  existence of, 49, 107, 109

  hyperbolic points, 134

  point
as pair of numbers, 97–98, 100, 112, 113–114, 114–115

  Polygons, 48

  Postulates, 12. See also Axioms

  Praxinoscopes, 78

  Precision, 4, 59

  Premises, 15–16, 90

  Principia (Newton), 47

  Proclus, 119

  Proofs, 12, 17, 19, 20, 26, 31, 47, 58, 59, 87, 150

  as artifacts, 32

  and common beliefs, 20, 21

  as difficult, 65, 89, 148

  of four-color theorem, 151

  by Lobachevsky, 133

  of parallel postulate, 119, 120–122, 124

  proof by contradiction, 83 (see also Reductio ad absurdum)

  of Pythagorean theorem, 71–75, 96

  steps in, 59

  of twenty-seventh proposition, 83–87, 90

  as way of life, 148, 156 (see also Axiomatic systems: as way of life)

  Proportions, 7, 94, 108

  Propositions, 6–7, 11, 17, 90

  difficulty of, 89

  fifth proposition, 58, 63–68

  first proposition, 60–63, 61(fig.)

  first twenty-eight propositions, 122

  forty-seventh proposition, 68–75

  forty-sixth proposition, 73

  fourth proposition, 26–27, 36, 39, 67, 68, 74

  sixteenth proposition, 83–84, 84(fig.), 84(n), 85(fig.), 86

  third proposition, 66

  thirty-second proposition, 119

  twenty-ninth proposition, 118, 155

  twenty-seventh proposition, 80–90, 81(fig.), 84(n), 86(fig.)

  Pseudosphere, 132–133, 132(fig.)

  Ptolemy I, 5

  Ptolemy Soter, 58, 119

  Pyramids, 11, 12

  Pythagoreans, 12, 100

  Pythagorean theorem, 68–75, 72(fig.), 100

  algebraic equation of, 96

  and parallel postulate, 119

  Quadrilateral figures, 160, 161

  Railroads, 4, 141

  Ratios, 94, 100, 101, 112–113

  Rectangles, 7, 96

  Rectilinear figures, 60, 160

  Reductio ad absurdum, 77, 83–87

  Reflection (in planes), 37, 68, 143, 144

  Relativity and Geometry (Torretti), 39

  Relativity theory, 118

  Renaissance, 8, 141. See also Arab renaissance

  Rhombus/rhomboid, 161

  Riemann, Bernhard, 118

  Rigid objects, 144

  Roman empire, 3–4

  Roman numerals, 4

  Rotation, 37, 143, 144

  Rubiyat of Omar Khayyám, 120–121

  Rulers. See Straight-edge and compass

  Ruskin, John, 78

  Russell, Bertrand, 7, 27, 28, 123

  Saccheri, Girolomo, 121

  “Saggio di interpretazione della geometria non-euclidea” (Beltrami), 132

  Science, 124

  Science and Hypothesis (Poincaré), 138

  Self-evidence, 46, 55

  Shapes, 3, 7, 12–13, 52, 60, 71, 107, 117, 133, 145, 153

  coincidence of, 25–26, 36, 39

  definition of, 49

  Size, 22

  Socrates, 15. See also Plato

  Some Versions of Pastoral (Empson), 57–68

  Space(s), 4, 8, 12, 20, 28, 35, 37, 43, 56, 70, 125, 149

  homogeneity of, 52

  three-dimensional, 40, 70, 144

  unbounded vs. infinite, 38

  Spheres, 38, 39. See also Surfaces: surface of a sphere

  Square roots. See Numbers: squaring/square roots of

  Squares, 7, 72(fig.), 75, 79, 96, 161

  St. Vincent Millay, Edna, 19

  Stability, 31

  Steiner-Lehmus theorem, 148

  Steinitz, Ernst, 103–104

  Straight-edge and compass, 47–48, 63, 145

  Subtraction, 21, 24, 67, 103, 104, 110, 112

  Superposition, 23, 39. See also Coincidence

  Surfaces, 33, 133, 159

  surface of a sphere, 38, 40, 125–126

  Syllogisms, 15–16

  Theaetetus, 6

  Theorema Egregium (Gauss), 41

  Theorems, 25, 79, 90, 147

  as being made axioms, 46

  forty-first theorem, 74

  four-color theorem, 151

  of hyperbolic geometry, 139

  of Lobachevsky, 131, 139

  relationship between axioms and theorems, 12, 14, 19, 149

  Steiner-Lehmus theorem, 148

  See also Pythagorean theorem

  Theories, 112, 118

  of Euclidean and hyperbolic geometry, 139

  Euclidean geometry as first theory, 108, 152

  Thom, René, 95, 107, 110, 149

  Time, 4, 12–13, 28, 78, 87, 88, 142, 149

  flow of time vs. points used to mark, 44

  and twenty-seventh proposition, 81–82

  Torretti, Roberto, 39

  Transformations, 143–144, 145

  Translation (in planes), 37, 143, 144

  Triangles, 7, 13, 25, 28, 39, 79, 84, 119

  and Beltrami pseudosphere, 133

  curvilinear, 139

  defined, 34, 160, 161

  as equal, 26, 67

  equilateral, 60–63, 147, 160

  hyperbolic, 130, 133(fig.), 139

  isosceles, 58, 64–68, 148, 160

  Platonic, 60 (see also Forms)

  right triangle, 68 (see also Pythagorean theorem)

  scalene, 160

  in spherical geometry, 125

  Trilateral figures, 160, 161

  Truth, 16, 25, 117, 127, 139

  Turner, J. M. W., 152

  “Uber den Zahlbegriff” (Hilbert), 107

  Unity/diversity of experience, 11, 154

  Vector spaces, 114

  “Vergleichende Betrachtungen über neuere geometrische Forschungen” (Klein), 140

  Vermeer, Johannes, 79

  View of Delft (painting), 79

  Vitruvius Pollio, Marcus, 1–2

  Void, 42, 44

  Voltaire, 57

  Watteau, Antoine, 77, 79, 82, 87

  Weyl, Hermann, 44

  “Whither Mathematics?” (Davies), 151

  Whymper, Edward, 57

  Wittgenstein, Ludwig, 155–156

  Zeno the Eleatic, 38

  Zero. See under Numbers

 

 

 


‹ Prev