The Anatomy of Violence
Page 51
51. Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—a possible prelude to violence. Science 289, 591–94.
52. Raine, A., Yang, Y., Narr, K. & Toga, A. (2011). Sex differences in orbitofrontal gray as a partial explanation for sex differences in antisocial personality. Molecular Psychiatry 16, 227–236.
53. Ibid.
54. Goldstein, J. M., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. N., et al. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex 11, 490–97.
55. Gur, R. C., Gunning-Dixon, F., Bilker, W. B. & Gur, R. E. (2002). Sex differences in temporo-limbic and frontal brain volumes of healthy adults. Cerebral Cortex 12, 998–1003; Garcia-Falgueras, A., Junque, C., Gimenez, M., Caldu, X., Segovia, S. & Guillamon, A. (2006). Sex differences in the human olfactory system. Brain Research 1116, 103–11.
56. Good, C. D., Johnsrude, I., Ashburner, J., Henson, R.N.A., Friston, K. J. & Frackowiak, R.S.J. (2001). Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage 14, 685–700.
57. Schlosser, R., Hutchinson, M., Joseffer, S., Rusinek, H., Saarimaki, A., et al. (1998). Functional magnetic resonance imaging of human brain activity in a verbal fluency task. Journal of Neurology, Neurosurgery, & Psychiatry 64, 492–98.
58. Goldstein, J. M., Jerram, M., Poldrack, R., Ahern, T., Kennedy, D. N., et al. (2005). Hormonal cycle modulates arousal circuitry in women using functional magnetic resonance imaging. Journal of Neuroscience 25, 9309–16.
59. McClure, E. B., Monk, C. S., Nelson, E. E., Zarahn, E., Leibenluft, E., et al. (2004). A developmental examination of gender differences in brain engagement during evaluation of threat. Biological Psychiatry 55, 1047–55.
60. Koch, K., Pauly, K., Kellermann, T., Seiferth, N. Y., Reske, M., et al. (2007). Gender differences in the cognitive control of emotion: An fMRI study. Neuropsychologia 45, 2744–54.
61. Yang, Y. & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Research: Neuroimaging 174, 81–88.
62. Mataro, M., Jurado, M. A., García-Sanchez, C., Barraquer, L., Costa-Jussa, F. R. & Junque, C. (2001). Long-term effects of bilateral frontal brain lesion: 60 years after injury with an iron bar. Archives of Neurology 58, 1139–42.
63. Ibid.
64. Bigler, E. D. (2001). Frontal lobe pathology and antisocial personality disorder. Archives of General Psychiatry 58, 609–11.
65. Ellenbogen, J. M., Hurford, M. O., Liebeskind, D. S., Neimark, G. B. & Weiss, D. (2005). Ventromedial frontal lobe trauma. Neurology 64, 757.
66. Mataro et al., Long-term effects of bilateral frontal brain lesion.
67. Sarwar, M. (1989). The septum pellucidum—normal and abnormal. American Journal of Neuroradiology 10, 989–1005.
68. Raine, A., Lee, L., Yang, Y. & Colletti, P. (2010). Presence of a neurodevelopmental marker for limbic maldevelopment in antisocial personality disorder and psychopathy. British Journal of Psychiatry 197, 186–92.
69. Gao, Y., Glenn, A. L., Schug, R. A., Yang, Y. L. & Raine, A. (2009). The neurobiology of psychopathy: A neurodevelopmental perspective. Canadian Journal of Psychiatry 54, 813–23.
70. Swayze, V. W., Johnson, V. P., Hanson, J. W., Piven, J., Sato, Y., et al. (2006). Magnetic resonance imaging of brain anomalies in fetal alcohol syndrome. Pediatrics 99, 232–40.
71. Bodensteiner, J. & Schaefer, G. (1997). Dementia pugilistica and cavum septi pellucidi: Born to box. Sports Medicine 24, 361–65.
72. Yang, Y., Raine, A., Karr, K. L., Colletti, P. & Toga, A. (2009). Localization of deformations within the amygdala in individuals with psychopathy. Archives of General Psychiatry 66, 986–94.
73. Knapska, E., Radwanska, K., Werka, T. & Kaczmarek, L. (2007). Functional internal complexity of amygdala: Focus on gene activity mapping after behavioral training and drugs of abuse. Physiological Reviews 87, 1113–73.
74. Ibid.
75. Raine, A., Ishikawa, S. S., Arce, E., Lencz, T., Knuth, K. H., et al. (2004). Hippocampal structural asymmetry in unsuccessful psychopaths. Biological Psychiatry 55, 185–91. It should be noted that this structural abnormality was specific to unsuccessful or caught psychopaths—it was not observed for successful psychopaths, who seem to lack the classical brain abnormalities found in their unsuccessful counterparts.
76. Raine, A., Buchsbaum, M. & LaCasse, L. (1997). Brain abnormalities in murderers indicated by positron emission tomography. Biological Psychiatry 42, 495–508.
77. Verstynen, T., Tierney, R., Urbanski, T. & Tang, A. (2001). Neonatal novelty exposure modulates hippocampal volumetric asymmetry in the rat. NeuroReport: For Rapid Communication of Neuroscience Research 12, 3019–22.
78. Riikonen, R., Salonen, I., Partanen, K. & Verho, S. (1999). Brain perfusion SPECT and MRI in foetal alcohol syndrome. Developmental Medicine & Child Neurology 41, 652–59.
79. Laakso, M. P., Vaurio, O., Koivisto, E., Savolainen, L., Eronen, M., et al. (2001). Psychopathy and the posterior hippocampus. Behavioural Brain Research 118, 187–93.
80. Boccardi, M., Ganzola, R., Rossi, R., Sabattoli, F., Laakso, M. P., et al. (2010). Abnormal hippocampal shape in offenders with psychopathy. Human Brain Mapping 31, 438–47.
81. Yang, Y. L., Raine, A., Han, C. B., Schug, R. A., Toga, A. W. & Narr, K. L. (2010). Reduced hippocampal and parahippocampal volumes in murderers with schizophrenia. Psychiatry Research: Neuroimaging 182, 9–13. It should be noted that these volume reductions in Chinese murderers were specific to those who also presented with schizophrenia.
82. LeDoux, J. (1996). The Emotional Brain. New York: Simon and Schuster.
83. Swanson, L. W. (1999). Limbic system. In G. Adelman & B. H. Smith (eds.), Encyclopedia of Neuroscience, pp. 1053–55. Amsterdam: Elsevier.
84. Lukas, T. R. & Siegel, A. (2001). Brain structures and neurotransmitters regulating aggression in cats: Implications for human aggression. Progress in Neuro-Psychopharmacology & Biological Psychiatry 25, 91–140.
85. Becker, A., Grecksch, G., Bernstein, H. G., Hollt, V. & Bogerts, B. (1999). Social behaviour in rats lesioned with ibotenic acid in the hippocampus: Quantitative and qualitative analysis. Psychopharmacology 144, 333–38.
86. Gorenstein, E. E. & Newman, J. P. (1980). Disinhibitory psychopathy—A new perspective and a model for research. Psychological Review 87, 301–15.
87. The dichotic listening task is a neuropsychological measure that presents consonant-vowel stimuli (“da,” “ba”) simultaneously to both left and right ears. Subjects who are more left-hemisphere dominant for language report more words from the right ear. Those less lateralized for language, who have language more equally represented in both hemispheres, show a reduction in this right-ear advantage.
88. Hare, R. D. & McPherson, L. M. (1984). Psychopathy and perceptual asymmetry during verbal dichotic listening. Journal of Abnormal Psychology 93, 141–49.
89. Raine, A., O’Brien, M., Smiley, N., Scerbo, A. & Chen, C. J. (1990). Reduced lateralization in verbal dichotic listening in adolescent psychopaths. Journal of Abnormal Psychology 99, 272–77.
90. Scerbo, A., Raine, A., O’Brien, M., Chan, C. J., Rhee, C. & Smiley, N. (1990). Reward dominance and passive avoidance learning in adolescent psychopaths. Journal of Abnormal Child Psychology 18, 451–63.
91. Quay, H. C. (1988). The behavioral reward and inhibition system in childhood behavior disorders. In L. M. Bloomingdale (ed.), Attention Deficit Disorder, vol. 3, pp. 176–86. Oxford: Pergamon Press.
92. Scerbo et al. Reward dominance and passive avoidance learning in adolescent psychopaths.
93. Glenn, A. L., Raine, A., Yaralian, P. S. & Yang, Y. (2010). Increased volume of the striatum in psychopathic individuals. Biological Psychiatry 67, 52–58.
94. Cohen, M. X.
, Schoene-Bake, J. C., Elger, C. E. & Weber, B. (2009). Connectivity-based segregation of the human striatum predicts personality characteristics. Nature Neuroscience 12, 32–34.
95. O’Doherty, J. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinions in Neurobiology 14, 769–76.
96. Barkataki, I., Kumari, V., Das, M., Taylor, P. & Sharma, T. (2006): Volumetric structural brain abnormalities in men with schizophrenia or antisocial personality disorder. Behavioral Brain Research 15, 239–47.
97. Tiihonen, J., Kuikka, J., Bergstrom, K., Hakola, P., Karhu, J., et al. (1995). Altered striatal dopamine re-uptake site densities in habitually violent and non-violent alcoholics. Nature Medicine 1, 654–57.
98. Amen, D. G., Stubblefield, M., Carmichael, B. & Thisted, R. (1996). Brain SPECT findings and aggressiveness. Annals of Clinical Psychiatry 8, 129–37.
99. Buckholtz, J. W., Treadway, M. T., Cowan, R. L., et al. (2010). Mesolimbic dopamine reward system hypersensitivity in individuals with psychopathic traits. Nature Neuroscience.
100. Williamson, S., Hare, R. D. & Wong, S. (1987). Violence: Criminal psychopaths and their victims. Canadian Journal of Behavioral Sciences 19, 454–62.
101. Glenn, A. L., Iyer, R., Graham, J., Koleva, S. & Haidt, J. (2010). Are all types of morality compromised in psychopathy? Journal of Personality Disorders 23, 384–98.
102. Decety, J., Michalska, K. J., Akitsuki, Y. & Lahey, B. B. (2009): Atypical empathic responses in adolescents with aggressive conduct disorder: A functional MRI investigation. Biological Psychology 80, 203–11.
103. Ekman, P. & O’Sullivan, M. (1991). Who can catch a liar? American Psychologist 46, 913–20.
104. Porter, S., Woodworth, M. & Birt, A. R. (2000). Truth, lies, and videotape: An investigation of the ability of federal parole officers to detect deception. Law and Human Behavior 24, 643–58.
105. DePaulo, B. M., Stone, J. L. & Lassiter, G. D. (1985). Deceiving and Detecting Deceit. In B. R. Schenkler (ed.), The Self and Social Life, pp. 323–70. New York: McGraw-Hill.
106. Leach, A. M., Talwar, V., Lee, K., Bala, N. & Lindsay, R.C.L. (2004). “Intuitive” lie detection of children’s deception by law enforcement officials and university students. Law and Human Behavior 28, 661–85.
107. Ibid.
108. Yang, Y. L ., Raine, A., Lencz, T., Bihrle, S., Lacasse, L., et al. (2005). Prefrontal structural abnormalities in liars. British Journal of Psychiatry 187, 320–25.
109. Yang, Y., Raine, A., Narr, K., Lencz, T., Lacasse, L., Colletti, P. & Toga, A. W. (2007). Localization of increased prefrontal white matter in pathological liars. British Journal of Psychiatry 190, 174–75.
110. Spence, S. A. (2005). Prefrontal white matter—the tissue of lies? Invited commentary on … Prefrontal white matter in pathological liars. British Journal of Psychiatry 187, 326–27.
111. Lee, T.M.C., Liu, H. L., Tan, L. H., Chan, C.C.H., Mahankali, S., Feng, C.-M., Hou, J., Fox, P. T. & Gao, J. H. (2002). Lie detection by functional magnetic resonance imaging. Human Brain Mapping 15, 157–64.
112. Paus, T., Collins, D. L., Evans, A. C., Leonard, G., Pike, B. & Zijdenbos, A. (2001). Maturation of white matter in the human brain: A review of magnetic resonance studies. Brain Research Bulletin 54, 255–66.
113. McCann, J. T. (1998). Malingering and Deception in Adolescents: Assessing Credibility in Clinical and Forensic Settings, 1st ed. Washington, D.C.: American Psychological Press.
114. Yang, Y., Raine, A., Narr, K., Lencz, T., Lacasse, L., et al. (2007). Localization of increased prefrontal white matter in pathological liars. British Journal of Psychiatry 190, 174–75.
115. Bengtsson, S. I., Nagy, Z., Skare, S., et al. (2005). Extensive piano practice has regionally-specific effects on white matter development. Nature Neuroscience 8, 1148–50.
116. Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences U.S.A. 97, 4398–4403.
117. Maguire, E. A., Woollett, K. & Spiers, H. J. (2006). London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis. Hippocampus 16.
118. Lombroso, C. (1968). Crime: Its Causes and Remedies. Translated by H. Horton. Montclair, N.J.: Patterson Smith (originally published 1911).
119. Langton, L. & Leeper-Piquero, N. L. (2007). Can general strain theory explain white-collar crime? A preliminary investigation of the relationship between strain and select white-collar offenses. Journal of Criminal Justice 35, 1–15.
120. Paternoster, R. & Simpson, S. (1993). A rational choice theory of corporate crime. In R.V.G. Clarke and M. Felson (eds.), Routine Activities and Rational Choice Theory, pp. 37–51. New Brunswick, N.J.: Transaction.
121. Sutherland, E. H. (1949). White Collar Crime. New York: Rinehart and Winston.
122. Wheeler, S., Weisburd, D. & Bode, N. (1982). Sentencing the white collar offender: Rhetoric and reality, American Sociological Review 47, 641–59.
123. Weisburd, D., Waring, E. & Chayet, E. J. (2001). White Collar Crime and Criminal Careers. New York: Cambridge University Press.
124. Raine, A., Laufer, W. S., Yang, Y., Narr, K. L. & Toga, A. W. (2012). Increased executive functioning, attention, and cortical thickness in white-collar criminals. Human Brain Mapping, 33, 2932–40.
125. Kongs, S. K., Thompson, L. L., Iverson, G. L., et al. (2000). Wisconsin Card Sorting Test: 64 Card Version; Professional Manual. Odessa, Fla.: Psychological Assessment Resources.
126. Williams, L. M., Brammer, M. J., Skerrett, D., Lagopolous, J., Rennie, C., et al. (2000). The neural correlates of orienting: An integration of fMRI and skin conductance orienting. NeuroReport 11, 3011–15.
127. Raine & Yang, Neural foundations to moral reasoning and antisocial behavior.
128. Tsujii, T., Okada, M. & Watanabe, S. (2010). Effects of aging on hemispheric asymmetry in inferior frontal cortex activity during belief-bias syllogistic reasoning: A near-infrared spectroscopy study. Behavioral Brain Research 210, 178–83; Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J. & Owen, A. M. (2010). The role of the right inferior frontal gyrus: Inhibition and attentional control. NeuroImage 50, 1313–19; Brass, M., Derrfuss, J., Forstmann, B. & von Cramon, D. Y. (2005). The role of the inferior frontal junction area in cognitive control. Trends in Cognitive Sciences 9, 314–16.
129. Shamay-Tsoory, S. G., Tomer, R., Berger, B. D., Goldsher, D. & Aharon-Peretz, J. (2005). Impaired “affective theory of mind” is associated with right ventromedial prefrontal damage. Cognitive and Behavioral Neurology 18, 55–67.; Goghari, V. M. & MacDonald, A. W. (2009). The neural basis of cognitive control: Response selection and inhibition. Brain and Cognition 71, 72–83.; Chikazoe, J. (2010). Localizing performance of go/no-go tasks to prefrontal cortical subregions. Current Opinion in Psychiatry 23, 267–72.
130. Bechara et al. Deciding advantageously; Bechara, A., Damasio, H. & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex 10, 295–307.
131. Kringelbach, M. L. & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology 72, 341–72.
132. Ibid.
133. Kringelbach, M. L. (2005). The human orbitofrontal cortex: Linking reward to hedonic experience. Nature Reviews Neuroscience 6, 691–702.
134. Buch, E. R., Mars, R. B., Boorman, E. D. & Rushworth, M.F.S. (2010). A network centered on ventral premotor cortex exerts both facilitatory and inhibitory control over primary motor cortex during action reprogramming. Journal of Neuroscience 30, 1395–1401; Pardo-Vazquez, J. L., Leboran, V. & Acuna, C. (2009). A role for the ventral premotor cortex beyond performance monitoring. Proceedings of the National Academy of Sciences, U.S.A. 106, 18,815–19.
135. Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C.
& Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLOS Biology 3, 529–35.
136. Lawrence, E. J., Shaw, P., Giampietro, V., Surguladze, S., Brammer, M. J., et al. (2006). The role of “shared representations” in social perception and empathy: An fMRI study. NeuroImage 29, 1173–84.
137. Damasio, Descartes’ Error.
138. Bechara, A. & Damasio, A. R. (2005). The somatic marker hypothesis: A neural theory of economic decision. Games and Economic Behavior 52, 336–72.
139. Decety, J. & Lamm, C. (2007). The role of the right temporo-parietal junction in social interaction: How low-level computational processes contribute to meta-cognition. The Neuroscientist 13, 580–93.
140. Hedden, T. & Gabrieli, J.D.E. (2010). Shared and selective neural correlates of inhibition, facilitation, and shifting processes during executive control. NeuroImage 51, 421–31.
141. Decety & Lamm, The role of the right temporo-parietal junction in social interaction.
6. NATURAL-BORN KILLERS
1. Jonnes, B. (1992). Voices from an Evil God, pp. 38–39. London: Blake.
2. It should be noted that while Sutcliffe believed his victims were prostitutes, not all of them were, including one of his first attacks.
3. This is not to say that we don’t sorely need more good studies on the basic scientific question of what the genetic and biological correlates of violence are. There are many more questions to be answered on the neurobiology of violence. Nevertheless, we need to move away from the unproductive debates over whether there is a biological basis to violence. We need to take what knowledge we have and begin to understand the early factors in infancy, childhood, and adolescence that give rise to these biological risk factors.
4. The Centers for Disease Control and Prevention in the United States is a government agency that focuses on health promotion and disease prevention. It is one of the main components of the Department of Health and Human Services in the United States: http://www.cdc.gov/ViolencePrevention/index.html.