Mastery
Page 34
What was interesting in all of these cases was the peculiar process that led to these inventions: generally, the inventors had a chance encounter with the available technology; then the idea would come to them that this technology could be used for other purposes; and finally they would try out different prototypes until the right one fell into place. What allows for this process is the willingness of the inventor to look at everyday things in a different light and to imagine new uses for them. For people who are stuck in rigid ways of seeing, the familiarity of an old application hypnotizes them into not seeing its other possibilities. What it all really comes down to is the possession of a flexible, adaptable mind—something that is often enough to separate a successful inventor or entrepreneur from the rest of the crowd.
After cashing in on Viaweb, Graham hit upon the idea of writing essays for the Internet—his rather peculiar form of blogging. These essays made him a celebrity among young hackers and programmers everywhere. In 2005 he was invited by undergraduates in the computer science department at Harvard to give a talk. Instead of boring them and himself by analyzing various programming languages, he decided to discuss the idea of technology startups themselves—why some work, why some fail. The talk was so successful, and Graham’s ideas so illuminating, that the students began to besiege him with questions about their own startup ideas. As he listened, he could sense that some of their concepts were not far off the mark, but that they badly needed shaping and guidance.
Graham had always intended to try his hand at investing in other people’s ideas. He had been the beneficiary of an angel investor in his project, and it was only right to return the favor by helping others. The problem was where to begin. Most angel investors had some related experience before they began investing, and they tended to start out on a small scale to get their feet wet. Graham had no such business experience. Based on this weakness, he hit upon an idea that at first glance seemed ridiculous—he would synchronously invest $15,000 in ten startups all at once. He would find these ten prospects by advertising his offer and choosing the best among the applicants. Over the course of a few months he would shepherd these novices and help guide them to the point of launching their idea. For this he would take 10 percent from any successful startup. It would be like an apprenticeship system for tech founders, but it really had another purpose—it would serve as a crash course for him in the investing business. He would be a lousy first investor and his pupils would be lousy entrepreneurs, making them a perfect match.
Yet again he recruited Robert Morris to join him in the business. A couple of weeks into the training, however, he and Morris realized that they were actually on to something powerful. Because of their experience with Viaweb they were able to give clear and effective advice. The startup ideas they were shepherding looked quite promising. Perhaps this system they had adopted as a way to learn quickly was an interesting model in itself. Most investors only handle a few startups a year; they are too overwhelmed with their own businesses to handle much more. But what if Graham and Morris were to devote their time exclusively to this apprenticeship system? They could mass-produce the service. They could fund hundreds instead of dozens of such startups. In the process they would learn in leaps and bounds, and this exponentially increasing knowledge would lead to increasing numbers of successful startups.
If it really took off, not only would they make a fortune, but they would also have a decided impact on the economy, unleashing into the system thousands of savvy entrepreneurs. They called their new company Y Combinator and considered it their ultimate hack to change the shape of the world’s economy.
They coached their apprentices in all of the principles they had learned along the way—the benefit in looking for new applications of existing technology and needs that are not being met; the importance of maintaining the closest possible relationship with customers; the need to keep ideas as simple and realistic as possible; the value of creating a superior product and of winning through craftsmanship, as opposed to fixating on making money.
As their apprentices learned, they learned as well. Oddly enough, they discovered that what really makes successful entrepreneurs is not the nature of their idea, or the university they went to, but their actual character—their willingness to adapt their idea and take advantage of possibilities they had not first imagined. This is precisely the trait—fluidity of mind—that Graham had identified in himself and in other inventors. The other essential character trait was supreme tenacity.
Over the years, evolving in its own way, Y Combinator has continued to grow at an astounding rate. It is valued now at $500 million, with the clear potential for further growth.
We generally have a misconception about the inventive and creative powers of the human mind. We imagine that creative people have an interesting idea, which they then proceed to elaborate and refine in a somewhat linear process. The truth, however, is much messier and more complex. Creativity actually resembles a process known in nature as evolutionary hijacking. In evolution, accidents and contingencies play an enormous role. For instance, feathers evolved from reptilian scales, their purpose being to keep birds warm. (Birds evolved from reptiles.) But eventually, those existing feathers became adapted for the purpose of flying, transforming into wing feathers. For our own primate ancestors living in trees, the form of the hand largely evolved out of the need to grasp branches with speed and agility. Our early hominid ancestors, walking on the ground, found this intricately developed hand quite useful for manipulating rocks, making tools, and gesturing in communication. Perhaps language itself developed as a strictly social tool and became hijacked as a means of reasoning, making human consciousness itself the product of an accident.
Human creativity generally follows a similar path, perhaps indicating a kind of organic fatality to the creation of anything. Ideas do not come to us out of nowhere. Instead, we come upon something by accident—in the case of Graham, a radio announcement that he hears, or questions from the audience after a lecture. If we are experienced enough and the moment is ripe, this accidental encounter will spark some interesting associations and ideas in us. In looking at the particular materials we can work with, we suddenly see another way to use them. All along the way, contingencies pop up that reveal different paths we can take, and if they are promising, we follow them, not sure of where they will lead. Instead of a straight-line development from idea to fruition, the creative process is more like the crooked branching of a tree.
The lesson is simple—what constitutes true creativity is the openness and adaptability of our spirit. When we see or experience something we must be able to look at it from several angles, to see other possibilities beyond the obvious ones. We imagine that the objects around us can be used and co-opted for different purposes. We do not hold on to our original idea out of sheer stubbornness, or because our ego is tied up with its rightness. Instead, we move with what presents itself to us in the moment, exploring and exploiting different branches and contingencies. We thus manage to turn feathers into flying material. The difference then is not in some initial creative power of the brain, but in how we look at the world and the fluidity with which we can reframe what we see. Creativity and adaptability are inseparable.
8. Dimensional Thinking
In 1798 Napoleon Bonaparte invaded Egypt in an attempt to transform it into a colony, but the invasion bogged down as the British, seeking to block the French, became involved. A year later, as the war dragged on, a soldier working on the reinforcement of a French fort near the town of Rosetta dug into the ground and hit a rock. In extracting the rock, he discovered that it was some kind of relic from ancient Egypt—a slab of basalt covered in writing. Napoleon had been motivated to invade Egypt partially by his intense curiosity for all things Egyptian, and had taken along with his troops French scientists and historians to help analyze the relics he hoped to find.
In looking at the slab of basalt, which came to be known as the Rosetta stone, the French savants grew excited. I
t contained text written out in three different scripts—on the top, Egyptian hieroglyphs; in the middle, what is known as demotic (the language and script of the common people of ancient Egypt), and on the bottom, ancient Greek. In translating the ancient Greek, they discovered that the text was a mundane proclamation celebrating the reign of Ptolemy V (203–181 B.C.). At the end of the text, however, it stated that the proclamation was to be written out in three versions, meaning that the content was the same in the demotic and the hieroglyphic. With the ancient Greek text as the key, it suddenly seemed possible to decipher the other two versions. Since the last known hieroglyphs had been written in A.D. 394, anyone who could read them had long died off, making it a completely dead and untranslatable language and leaving a seemingly unsolvable mystery as to the content of so many of the writings in temples and on papyri. Now, perhaps, these secrets could finally be revealed.
The stone was carted off to an institution in Cairo, but in 1801 the English defeated the French in Egypt and threw them out. Knowing of the extremely high value of the Rosetta stone, they hunted it down in Cairo and shipped it off to London, where it remains to this day in the British Museum. As drawings of the stone began to be passed around, intellectuals from all parts of Europe became involved in a competition to be the first to decipher the hieroglyphs and unlock the mysteries. As they began to tackle the puzzle, some progress was made. Certain hieroglyphs were outlined in a rectangle, known as cartouches. It was determined that these cartouches contained the names of various royal figures. One Swedish professor had been able to make out the name of Ptolemy in the demotic, and speculated on the sound values the characters might have. But the initial enthusiasm for deciphering the hieroglyphs eventually died out, and many worried that they would remain undecipherable. The further anyone got with the puzzle, the more questions that were raised about the kind of writing system represented by the symbols themselves.
In 1814 a new figure entered the fray—an Englishman named Dr. Thomas Young—who quickly became the leading candidate to be the first to decipher the Rosetta stone. Although a medical doctor, he was a man who had dabbled in all the sciences and was considered something of a genius. He had the blessing of the English establishment and full access to all of the various papyri and relics the English had confiscated, including the stone itself. Furthermore, he was independently wealthy and could devote all of his time to the study. And so, throwing himself into the work with great enthusiasm, Young began to make some progress.
He had a computational approach to the problem. He counted the number of times a particular word, such as “god,” appeared in the Greek text, then found a word that appeared the same number of times in the demotic, assuming they were the same word. He did everything he could to make the letters in demotic fit his scheme—if the apparent equivalent word of “god” seemed too long, he would simply deduce that certain letters were meaningless. He assumed that the three texts went in the same order, and that he could match words by their location. Sometimes he guessed right; most often he got nowhere. He made some key discoveries—that demotic and hieroglyphs were related, the one being a kind of loose handwritten form of the other; and that demotic used a phonetic alphabet to spell out foreign names, but that it was mostly a system of pictograms. But he kept hitting dead ends, and he never got close to trying his hand at the hieroglyphs. After a few years, he essentially gave up.
In the meantime, there appeared on the scene a young man who seemed to be an unlikely candidate to succeed in this race—Jean-Francois Champollion (1790–1832). He came from a small town near Grenoble. His family was relatively poor, and until the age of seven Champollion had no formal education. But he had one advantage over all the others: from his earliest years he had been drawn to the history of ancient civilizations. He wanted to discover new things about the origins of mankind, and for this purpose he took up the study of ancient languages—Greek, Latin, and Hebrew, as well as several other Semitic languages—all of which he mastered with remarkable speed by the age of twelve.
Quickly his attention was drawn to ancient Egypt. In 1802 he heard about the Rosetta stone, and he told his older brother that he would be the one to decipher it. The moment he began to study the ancient Egyptians, he experienced a vivid identification with everything that had to do with the civilization. As a child, he had a powerful visual memory. He could draw with exceptional skill. He tended to see the writings in books (even books in French) as if they were drawings instead of an alphabet. When he first laid eyes on hieroglyphs they seemed almost familiar to him. Soon his relationship to hieroglyphs bordered on a fanatical obsession.
To really make progress, he decided he would have to learn the language known as Coptic. After Egypt became a Roman colony in 30 B.C., the old language, demotic, slowly died out, and was replaced by Coptic—a mix of Greek and Egyptian. After the Arabs conquered Egypt and converted it to Islam, making Arabic the official idiom, the remaining Christians in the land retained Coptic as their language. By Champollion’s time only a few Christians remained who still spoke the ancient language, mostly monks and priests. In 1805 just such a monk passed through Champollion’s small town, and he quickly befriended him. The monk taught him the rudiments of Coptic, and when he returned a few months later, he brought Champollion a grammar book. The boy worked at the language day and night, with a fervor that others saw as madness. He wrote his brother: “I do nothing else. I dream in Coptic…. I am so Coptic, that for fun, I translate into Coptic everything that comes into my head.” When he later went to Paris for schooling he found more monks, and he practiced to the point where he was told that he spoke the dying language as well as any native.
With only a poor reproduction of the Rosetta stone at his disposal, he began to attack it with various hypotheses, all of which were later proven quite wrong. Unlike the others, however, Champollion’s enthusiasm never dampened. The problem for him was the political turmoil of his time. An avowed son of the French Revolution, he finally came to support the cause of Napoleon just as the emperor lost power. When King Louis XVIII came to the throne as the new French king, Champollion’s Napoleonic sympathies cost him his job as a professor. Years of grinding poverty and ill health forced him to abandon his interest in the Rosetta stone. But in 1821, finally rehabilitated by the government and living in Paris, Champollion returned to the quest with a renewed energy and determination.
Having been away from the study of hieroglyphics for some time, he came back with a fresh perspective. The problem, he decided, was that others were approaching decipherment as if it involved some kind of mathematical code. But Champollion, who spoke dozens of languages and could read many dead languages, understood that languages evolve in a haphazard manner, influenced by the influx of new groups into a society and shaped by the passage of time. They are not mathematical formulas, but living, evolving organisms. They are complex. He now approached the hieroglyphs in a more holistic fashion. His goal was to figure out exactly what kind of script it was—pictograms (literally the picture representing the thing), ideograms (the picture representing ideas), some kind of phonetic alphabet, or perhaps a mix of all three.
With this in mind, he tried something that strangely enough no one had thought of—he made a comparison of the number of words in the Greek and hieroglyphic sections. He counted 486 words in the Greek text, and 1,419 hieroglyphic signs. Champollion had been operating under the assumption that hieroglyphs were ideograms, each symbol representing an idea or word. With such a discrepancy in number, this assumption was no longer possible. He then tried to identify groups of hieroglyphic symbols that would constitute words, but this numbered only 180. He could find no clear numerical relationship between the two, and so the only possible conclusion from all of this was that hieroglyphic writing is a mixed system of ideograms, pictograms, and a phonetic alphabet, making it more complex than anyone had imagined.
He next decided to attempt something that anyone else would have thought insane and useless—to apply
his visual powers to the demotic and hieroglyphic texts, looking exclusively at the shapes of the letters or signs. In doing so he began to see patterns and correspondences—for instance, a particular sign in the hieroglyph, such as the depiction of a bird, had a rough equivalent in demotic, the image of the bird becoming less realistic and more like an abstract shape. Because of his incredible photographic memory, he could identify hundreds of these equivalences between symbols, although he could not say what any one of them meant. They remained merely images.
Armed with this knowledge, he went on the attack. On the Rosetta stone, he examined the royal cartouche in the demotic that had been previously identified as containing the name of Ptolemy. Knowing now many equivalent signs between hieroglyphs and demotic, he transposed the demotic symbols into what they should look like in the hieroglyphic version, to create what should be the word for Ptolemy. To his surprise and delight, he found such a word—making this the first successful decipherment of a hieroglyph. Knowing that this name was probably written out in phonetics (as would be all foreign names), he deduced the sound equivalences in both demotic and hieroglyph for Ptolemy. With the letters P T L now identified, he found another cartouche in a papyrus document that he was certain would have to be that of Cleopatra, now adding new letters to his knowledge. Ptolemy and Cleopatra had two different letters for T. For others this might prove baffling, but to Champollion he understood that it merely represented homophones—much as the f sound in “phone” and “fold.” With growing knowledge of letters he proceeded to decipher the names of all of the royal cartouches he could find, giving him a treasure trove of alphabetic information.
Then in September 1822 it all became unlocked in the most surprising way, in the course of one day. A temple had been discovered in a desolate part of Egypt whose walls and statues were covered in hieroglyphs. Accurate drawings of the hieroglyphs fell into Champollion’s hands, and in looking at them he was struck by something curious—none of the cartouches corresponded to the names he had already identified. He decided to apply the phonetic alphabet he had developed to one of them, but could only see the letter S at the end. The first symbol reminded him of the image of the sun. In Coptic, which was a distant relative of ancient Egyptian, the word for sun is Re. In the middle of the cartouche was a trident symbol with three prongs that looked eerily like an M. With great excitement he realized this could be the name Ramses. Ramses was a pharaoh of the thirteenth century B.C., and this would mean that the Egyptians had a phonetic alphabet dating back who knows how far in time—an earth-shattering discovery. He needed more proof to assert this.