Book Read Free

The Future

Page 28

by Al Gore


  The ability to monitor and continuously update individuals’ health functions and trends will make preventive care much more effective. The new economics of health care driven by this revolution may soon make the traditional insurance model based on large risk pools obsolete because of the huge volume of fine-grained information about every individual that can now be gathered. The role of insurance companies is already being reinvented as these firms begin to adopt digital health models and mine the “big data” being created.

  Pharmaceuticals, which are now aimed at large groups of individuals manifesting similar symptoms, will soon be targeted toward genetic and molecular signatures of individual patients. This revolution is already taking place in cancer treatment and in the treatment of “orphan diseases” (those that affect fewer than 200,000 people in the U.S.; the definition varies from country to country). This trend is expected to broaden as our knowledge of diseases improves.

  The use of artificial intelligence—like IBM’s Watson system—to assist doctors in making diagnoses and prescribing treatment options promises to reduce medical errors and enhance the skills of physicians. Just as artificial intelligence is revolutionizing the work of lawyers, it will profoundly change the work of doctors. Dr. Eric Topol, in his book The Creative Destruction of Medicine, writes, “This is much bigger than a change; this is the essence of creative destruction as conceptualized by [Austrian economist Joseph] Schumpeter. Not a single aspect of health and medicine today will ultimately be spared or unaffected in some way. Doctors, hospitals, the life science industry, government and its regulatory bodies: all are subject to radical transformation.”

  Individuals will play a different role in their own health care as well. Numerous medical teams are working with software engineers to develop more sophisticated self-tracking programs that empower individuals to be more successful in modifying unhealthy behaviors in order to manage chronic diseases. Some of these programs facilitate more regular communication between doctors and patients to discuss and interpret the continuous data flows from digital monitors that are on—and inside—the patient’s body. This is part of a broader trend known as the “quantified self” movement.

  Other programs and apps create social networks of individuals attempting to deal with the same health challenges—partly to take advantage of what scientists refer to as the Hawthorne effect: the simple knowledge that one’s progress is being watched by others leads to an improvement in the amount of progress made. For example, some people (I do not include myself in this group) are fond of the new scales that automatically tweet their weight so that everyone who follows them will see their progress or lack thereof. There are new companies being developed based on the translation of landmark clinical trials (such as the Diabetes Prevention Program) from resource-intensive studies into social and digital media programs. Some experts believe that global access to large-scale digital programs aimed at changing destructive behaviors may soon make it possible to significantly reduce the incidence of chronic diseases like diabetes and obesity.

  THE NEW ABILITIES scientists have gained to see, study, map, modify, and manipulate cells in living systems are also being applied to the human brain. These techniques have already been used to give amputees the ability to control advanced prosthetic arms and legs with their brains, as if they were using their own natural limbs—by connecting the artificial limbs to neural implants. Doctors have also empowered paralyzed monkeys to operate their arms and hands by implanting a device in the brain that is wired to the appropriate muscles. In addition, these breakthroughs offer the possibility of curing some brain diseases.

  Just as the discovery of DNA led to the mapping of the human genome, the discovery of how neurons in the brain connect to and communicate with one another is leading inexorably toward the complete mapping of what brain scientists call the “connectome.”* Although the data processing required is an estimated ten times greater than that required for mapping the genome, and even though several of the key technologies necessary to complete the map are still in development, brain scientists are highly confident that they will be able to complete the first “larger-scale maps of neural wiring” within the next few years.

  The significance of a complete wiring diagram for the human brain can hardly be overstated. More than sixty years ago, Teilhard de Chardin predicted that “Thought might artificially perfect the thinking instrument itself.”

  Some doctors are using neural implants to serve as pacemakers for the brains of people who have Parkinson’s disease—and provide deep brain stimulation to alleviate their symptoms. Others have used a similar technique to alert people with epilepsy to the first signs of a seizure and stimulate the brain to minimize its impact. Others have long used cochlear implants connected to an external microphone to deliver sound into the brain and the auditory nerve. Interestingly, these devices must be activated in stages to give the brain a chance to adjust to them. In Boston, scientists at the Massachusetts Eye and Ear Infirmary connected a lens to a blind man’s optic nerve, enabling him to perceive color and even to read large print.

  Yet for all of the joy and exhilaration that accompany such miraculous advances in health care, there is also an undercurrent of apprehension for some, because the scope, magnitude, and speed of the multiple revolutions in biotechnology and the life sciences will soon require us to make almost godlike distinctions between what is likely to be good or bad for the entire future of the human species, particularly where permanently modifying the gene pool is concerned. Are we ready to make such decisions? The available evidence would suggest that the answer is not really, but we are going to make them anyway.

  A COMPLEX ETHICAL CALCULUS

  We know intuitively that we desperately need more wisdom than we currently have in order to responsibly wield some of these new powers. To be sure, many of the choices are easy because the obvious benefits of most new genetically based interventions make it immoral not to use them. The prospect of eliminating cancer, diabetes, Alzheimer’s, multiple sclerosis, and other deadly and fearsome diseases ensures these new capabilities will proceed at an ever accelerating rate.

  Other choices may not be as straightforward. The prospective ability to pick traits like hair and eye color, height, strength, and intelligence to create “designer babies” may be highly appealing to some parents. After all, consider what competitive parenting has already done for the test preparation industry. If some parents are seen to be giving their children a decisive advantage through the insertion of beneficial genetic traits, other parents may feel that they have to do the same.

  Yet some genetic alterations will be passed on to future generations and may trigger collateral genetic changes that are not yet fully understood. Are we ready to seize control of heredity and take responsibility for actively directing the future course of evolution? As Dr. Harvey Fineberg, president of the Institute of Medicine, put it in 2011, “We will have converted old-style evolution into neo-evolution.” Are we ready to make these choices? Again, the answer seems to be no, yet we are going to make them anyway.

  But who is the “we” who will make these choices? These incredibly powerful changes are overwhelming the present capacity of humankind for deliberative collective decision making. The atrophy of American democracy and the consequent absence of leadership in the global community have created a power vacuum at the very time when human civilization should be shaping the imperatives of this revolution in ways that protect human values. Instead of seizing the opportunity to drive down health costs and improve outcomes, the United States is decreasing its investment in biomedical research. The budget for the National Institutes of Health has declined over the past ten years, and the U.S. education system is waning in science, math, and engineering.

  One of the early pioneers of in vitro fertilization, Dr. Jeffrey Steinberg, who runs the Los Angeles Fertility Institutes, said that the beginning of the age of active trait selection is now upon us. “It’s time for everyone to pull their heads
out of the sand,” says Steinberg. One of his colleagues at the center, Marcy Darnovsky, said that the discovery in 2012 of a noninvasive process to sequence a complete fetal genome is already raising “some scenarios that are extremely troubling,” adding that among the questions that may emerge from wider use of such tests is “who deserves to be born?”

  Richard Hayes, executive director of the Center for Genetics and Society, expressed his concern that the debate on the ethical questions involved with fetal genomic screening and trait selection thus far has primarily involved a small expert community and that, “Average people feel overwhelmed with the technical detail. They feel disempowered.” He also expressed concern that the widespread use of trait selection could lead to “an objectification of children as commodities.… We support the use of [preimplantation genetic diagnosis (PGD)] to allow couples at risk to have healthy children. But for non-medical, cosmetic purposes, we believe this would undermine humanity and create a techno-eugenic rat race.”

  Nations are competitive too. China’s Beijing Genomic Institute (BGI) has installed 167 of the world’s most powerful genomic sequencing machines in their Hong Kong and Shenzhen facilities that experts say will soon exceed the sequencing capacity of the entire United States.

  Its initial focus is finding genes associated with higher intelligence and matching individual students with professions or occupations that make the best use of their capabilities.

  According to some estimates, the Chinese government has spent well over $100 billion on life sciences research over just the last three years, and has persuaded 80,000 Chinese Ph.D.’s trained in Western countries to return to China. One Boston-based expert research team, the Monitor Group, reported in 2010 that China is “poised to become the global leader in life science discovery and innovation within the next decade.” China’s State Council has declared that its genetic research industry will be one of the pillars of its twenty-first-century industrial ambitions. Some researchers have reported preliminary discussions of plans to eventually sequence the genomes of almost every child in China.

  Multinational corporations are also playing a powerful role, quickly exploiting the many advances in the laboratory that have profitable commercial applications. Having invaded the democracy sphere, the market sphere is now also bidding for dominance in the biosphere. Just as Earth Inc. emerged from the interconnection of billions of computers and intelligent devices able to communicate easily with one another across all national boundaries, Life Inc. is emerging from the ability of scientists and engineers to connect flows of genetic information among living cells across all species boundaries.

  The merger between Earth Inc. and Life Inc. is well under way. Since the first patent on a gene was allowed by a Supreme Court decision in the U.S. in 1980, more than 40,000 gene patents have been issued, covering 2,000 human genes. So have tissues, including some tissues taken from patients and used for commercial purposes without their permission. (Technically, in order to receive a patent, the owner must transform, isolate, or purify the gene or tissue in some way. In practice, however, the gene or tissue itself becomes commercially controlled by the patent owner.)

  There are obvious advantages to the use of the power of the profit motive and of the private sector in exploiting the new revolution in the life sciences. In 2012, the European Commission approved the first Western gene therapy drug, known as Glybera, in a treatment of a rare genetic disorder that prevents the breakdown of fat in blood. In August 2011, the U.S. Food and Drug Administration (FDA) approved a drug known as Crizotinib for the targeted treatment of a rare type of lung cancer driven by a gene mutation.

  However, the same imbalance of power that has produced dangerous levels of inequality in income is also manifested in the unequal access to the full range of innovations important to humanity flowing out of the Life Sciences Revolution. For example, one biotechnology company—Monsanto—now controls patents on the vast majority of all seeds planted in the world. A U.S. seed expert, Neil Harl of Iowa State University, said in 2010, “We now believe that Monsanto has control over as much as 90 percent of [seed genetics].”

  The race to patent genes and tissues is in stark contrast to the attitude expressed by the discoverer of the polio vaccine, Jonas Salk,† when he was asked by Edward R. Murrow, “This vaccine is going to be in great demand. Everyone’s going to want it. It’s potentially very lucrative. Who holds the patent?” In response, Salk said, “The American people, I guess. Could you patent the sun?”

  THE DIGITIZATION OF LIFE

  In Salk’s day, the idea of patenting life science discoveries intended for the greater good seemed odd. A few decades later, one of Salk’s most distinguished peers, Norman Borlaug, implemented his Green Revolution with traditional crossbreeding and hybridization techniques at a time when the frenzy of research into the genome was still in its early stages. Toward the end of his career, Borlaug referred to the race in the U.S. to lock down ownership of patents on genetically modified plants, saying, “God help us if that were to happen, we would all starve.” He opposed the dominance of the market sphere in plant genetics and told an audience in India, “We battled against patenting … and always stood for free exchange of germplasm.” The U.S. and the European Union both recognize patents on isolated or purified genes. Recent cases in the U.S. appellate courts continue to uphold the patentability of genes.

  On one level, the digitization of life is merely a twenty-first-century continuation of the story of humankind’s mastery over the world. Alone among life-forms, we have the ability to make complex informational models of reality. Then, by learning from and manipulating the models, we gain the ability to understand and manipulate the reality. Just as the information flowing through the Global Mind is expressed in ones and zeros—the binary building blocks of the Digital Revolution—the language of DNA spoken by all living things is expressed in four letters: A, T, C, and G.

  Even leaving aside its other miraculous properties, DNA’s information storage capacity is incredible. In 2012, a research team at Harvard led by George Church encoded a book with more than 50,000 words into strands of DNA and then read it back with no errors. Church, a molecular biologist, said a billion copies of the book could be stored in a test tube and be retrieved for centuries, and that “a device the size of your thumb could store as much information as the whole internet.”

  At a deeper level, however, the discovery of how to manipulate the designs of life itself marks the beginning of an entirely new story. In the decade following the end of World War II, the double helix structure of DNA was discovered by James Watson, Francis Crick, and Rosalind Franklin. (Franklin was, historians of science now know, unfairly deprived of recognition for her seminal contributions to the scientific paper announcing the discovery in 1953. She died before the Nobel Prize in Medicine was later awarded to Watson and Crick.) In 2003, exactly fifty years later, the human genome was sequenced.

  Even as the scientific community is wrestling with the challenges of all the data involved in DNA sequencing, they are beginning to sequence RNA (ribonucleic acid), which scientists are finding plays a far more sophisticated role than simply serving as a messenger system to convey the information that is translated into proteins. The proteins themselves—which among other things actually build and control the cells that make up all forms of life—are being analyzed in the Human Proteome Project, which must deal with a further large increase in the amount of data involved. Proteins take many different forms and are “folded” in patterns that affect their function and role. After they are “translated,” proteins can also be chemically modified in multiple ways that extend their range of functions and control their behavior. The complexity of this analytical challenge is far beyond that involved in sequencing the genome.

  “Epigenetics” involves the study of inheritable changes that do not involve a change in the underlying DNA. The Human Epigenome Project has made major advances in the understanding of these changes. Several pharmaceutical pr
oducts based on epigenetic breakthroughs are already helping cancer patients, and other therapeutics are being tested in human clinical trials. The decoding of the underpinnings of life, health, and disease is leading to many exciting diagnostic and therapeutic breakthroughs.

  In the same way that the digital code used by computers contains both informational content and operating instructions, the intricate universal codes of biology now being deciphered and catalogued make it possible not only to understand the blueprints of life-forms, but also to change their designs and functions. By transferring genes from one species to another and by creating novel DNA strands of their own design, scientists can insert them into life-forms to transform and commandeer them to do what they want them to do. Like viruses, these DNA strands are not technically “alive” because they cannot replicate themselves. But also like viruses, they can take control of living cells and program behaviors, including the production of custom chemicals that have value in the marketplace. They can also program the replication of the DNA strands that were inserted into the life-form.

  The introduction of synthetic DNA strands into living organisms has already produced beneficial advances. More than thirty years ago, one of the first breakthroughs was the synthesis of human insulin to replace less effective insulin produced from pigs and other animals. In the near future, scientists anticipate significant improvements in artificial skin and synthetic human blood. Others hope to engineer changes in cyanobacteria to produce products as diverse as fuel for vehicles and protein for human consumption.

  But the spread of the technology raises questions that are troubling to bioethicists. As the head of one think tank studying this science put it, “Synthetic biology poses what may be the most profound challenge to government oversight of technology in human history, carrying with it significant economic, legal, security and ethical implications that extend far beyond the safety and capabilities of the technologies themselves. Yet by dint of economic imperative, as well as the sheer volume of scientific and commercial activity underway around the world, it is already functionally unstoppable … a juggernaut already beyond the reach of governance.”

 

‹ Prev