The Fabric of the Cosmos: Space, Time, and the Texture of Reality
Page 44
Of course, there was still a problem. Although the mathematics worked, there was—and still is—no evidence of a spatial dimension beyond the three we all know about. So was Kaluza's discovery a mere curiosity, or was it somehow relevant to our universe? Kaluza had a powerful trust in theory—he had, for example, learned to swim by studying a treatise on swimming and then diving into the sea—but the idea of an invisible space dimension, no matter how compelling the theory, still sounded outrageous. Then, in 1926, the Swedish physicist Oskar Klein injected a new twist into Kaluza's idea, one that suggested where the extra dimension might be hiding.
The Hidden Dimensions
To understand Klein's idea, picture Philippe Petit walking on a long, rubber-coated tightrope stretched between Mount Everest and Lhotse. Viewed from a distance of many miles, as in Figure 12.5, the tightrope appears to be a one-dimensional object like a line—an object that has extension only along its length. If we were told that a tiny worm was slithering along the tightrope in front of Philippe, we'd wildly cheer it on because it needs to stay ahead of Philippe's step to avoid disaster. Of course, with a moment's reflection we all realize that there is more to the surface of the tightrope than the left/right dimension we can directly perceive. Although difficult to see with the naked eye from a great distance, the surface of the tightrope has a second dimension: the clockwise/counterclockwise dimension that is "wrapped" around it. With the aid of a modest telescope, this circular dimension becomes visible and we see that the worm can move not only in the long, unfurled left/right direction but also in the short, "curled-up" clockwise/counterclockwise direction. That is, at every point on the tightrope, the worm has two independent directions in which it can move (that's what we mean when we say the tightrope's surface is two-dimensional 35 ), so it can safely stay out of Philippe's way either by slithering ahead of him, as we initially envisioned, or by crawling around the tiny circular dimension and letting Philippe pass above.
The tightrope illustrates that dimensions—the independent directions in which anything can move—come in two qualitatively distinct varieties. They can be big and easy to see, like the left/right dimension of the tightrope's surface, or they can be tiny and more difficult to see, like the clockwise/counterclockwise dimension that circles around the tightrope's surface. In this example, it was not a major challenge to see the small circular girth of the tightrope's surface. All we needed was a reasonable magnifying instrument. But as you can imagine, the smaller a curled-up dimension, the more difficult it is to detect. At a distance of a few miles, it's one thing to reveal the circular dimension of a tightrope's surface; it would be quite another to reveal the circular dimension of something as thin as dental floss or a narrow nerve fiber.
Figure 12.5 From a distance, a tightrope wire looks one-dimensional, although with a strong enough telescope, its second, curled-up dimension becomes visible.
Klein's contribution was to suggest that what's true for an object within the universe might be true for the fabric of the universe itself. Namely, just as the tightrope's surface has both large and small dimensions, so does the fabric of space. Maybe the three dimensions we all know about—left/right, back/forth, and up/down—are like the horizontal extent of the tightrope, dimensions of the big, easy-to-see variety. But just as the surface of the tightrope has an additional, small, curled-up, circular dimension, maybe the fabric of space also has a small, curled-up, circular dimension, one so small that no one has powerful enough magnifying equipment to reveal its existence. Because of its tiny size, Klein argued, the dimension would be hidden.
How small is small? Well, by incorporating certain features of quantum mechanics into Kaluza's original proposal, Klein's mathematical analysis revealed that the radius of an extra circular spatial dimension would likely be roughly the Planck length, 16 certainly way too small for experimental accessibility (current state-of-the-art equipment cannot resolve anything smaller than about a thousandth the size of an atomic nucleus, falling short of the Planck length by more than a factor of a million billion). Yet, to an imaginary, Planck-sized worm, this tiny, curled-up circular dimension would provide a new direction in which it could roam just as freely as an ordinary worm negotiates the circular dimension of the tightrope in Figure 12.5. Of course, just as an ordinary worm finds that there isn't much room to explore in the clockwise direction before it finds itself back at its starting point, a Planck-sized worm slithering along a curled-up dimension of space would also repeatedly circle back to its starting point. But aside from the length of the travel it permitted, a curled-up dimension would provide a direction in which the tiny worm could move just as easily as it does in the three familiar unfurled dimensions.
To get an intuitive sense of what this looks like, notice that what we've been referring to as the tightrope's curled-up dimension—the clockwise/ counterclockwise direction —exists at each point along its extended dimension. The earthworm can slither around the circular girth of the tightrope at any point along its outstretched length, and so the tightrope's surface can be described as having one long dimension, with a tiny, circular direction tacked on at each point, as in Figure 12.6. This is a useful image to have in mind because it also applies to Klein's proposal for hiding Kaluza's extra dimension of space.
To see this, let's again examine the fabric of space by sequentially showing its structure on ever smaller distance scales, as in Figure 12.7. At the first few levels of magnification, nothing new is revealed: the fabric of space still appears three-dimensional (which, as usual, we schematically represent on the printed page by a two-dimensional grid). However, when we get down to the Planck scale, the highest level of magnification in the figure, Klein suggested that a new, curled-up dimension becomes visible.
Figure 12.6 The surface of a tightrope has one long dimension with a circular dimension tacked on at each point.
Figure 12.7 The Kaluza-Klein proposal is that on very small scales, space has an extra circular dimension tacked on to each familiar point.
Just as the circular dimension of the tightrope exists at each point along its big, extended dimension, the circular dimension in this proposal exists at each point in the familiar three extended dimensions of daily life. In Figure 12.7, we illustrate this by drawing the additional circular dimension at various points along the extended dimensions (since drawing the circle at every point would obscure the image) and you can immediately see the similarity with the tightrope in Figure 12.6. In Klein's proposal, therefore, space should be envisioned as having three unfurled dimensions (of which we show only two in the figure) with an additional circular dimension tacked on to each point. Notice that the extra dimension is not a bump or a loop within the usual three spatial dimensions, as the graphic limitations of the figure might lead you to think. Instead, the extra dimension is a new direction, completely distinct from the three we know about, which exists at every point in our ordinary three-dimensional space, but is so small that it escapes detection even with our most sophisticated instruments.
With this modification to Kaluza's original idea, Klein provided an answer to how the universe might have more than the three space dimensions of common experience that could remain hidden, a framework that has since become known as Kaluza-Klein theory. And since an extra dimension of space was all Kaluza needed to merge general relativity and electromagnetism, Kaluza-Klein theory would seem to be just what Einstein was looking for. Indeed, Einstein and many others became quite excited about unification through a new, hidden space dimension, and a vigorous effort was launched to see whether this approach would work in complete detail. But it was not long before Kaluza-Klein theory encountered its own problems. Perhaps most glaring of all, attempts to incorporate the electron into the extra-dimensional picture proved unworkable. 17 Einstein continued to dabble in the Kaluza-Klein framework until at least the early 1940s, but the initial promise of the approach failed to materialize, and interest gradually died out.
Within a few decades, though, Kaluza-Klein
theory would make a spectacular comeback.
String Theory and Hidden Dimensions
In addition to the difficulties Kaluza-Klein theory encountered in trying to describe the microworld, there was another reason scientists were hesitant about the approach. Many found it both arbitrary and extravagant to postulate a hidden spatial dimension. It is not as though Kaluza was led to the idea of a new spatial dimension by a rigid chain of deductive reasoning. Instead, he pulled the idea out of a hat, and upon analyzing its implications discovered an unexpected link between general relativity and electromagnetism. Thus, although it was a great discovery in its own right, it lacked a sense of inevitability. If you asked Kaluza and Klein why the universe had five spacetime dimensions rather than four, or six, or seven, or 7,000 for that matter, they wouldn't have had an answer much more convincing than "Why not?"
More than three decades later, the situation changed radically. String theory is the first approach to merge general relativity and quantum mechanics; moreover, it has the potential to unify our understanding of all forces and all matter. But the quantum mechanical equations of string theory don't work in four spacetime dimensions, nor in five, six, seven, or 7,000. Instead, for reasons discussed in the next section, the equations of string theory work only in ten spacetime dimensions—nine of space, plus time. String theory demands more dimensions.
This is a fundamentally different kind of result, one never before encountered in the history of physics. Prior to strings, no theory said anything at all about the number of spatial dimensions in the universe. Every theory from Newton to Maxwell to Einstein assumed that the universe had three space dimensions, much as we all assume the sun will rise tomorrow. Kaluza and Klein proffered a challenge by suggesting that there were four space dimensions, but this amounted to yet another assumption—a different assumption, but an assumption nonetheless. Now, for the first time, string theory provided equations that predicted the number of space dimensions. A calculation—not an assumption, not a hypothesis, not an inspired guess—determines the number of space dimensions according to string theory, and the surprising thing is that the calculated number is not three, but nine. String theory leads us, inevitably, to a universe with six extra space dimensions and hence provides a compelling, ready-made context for invoking the ideas of Kaluza and Klein.
The original proposal of Kaluza and Klein assumed only one hidden dimension, but it's easily generalized to two, three, or even the six extra dimensions required by string theory. For example, in Figure 12.8a we replace the additional circular dimension of Figure 12.7, a one-dimensional shape, with the surface of a sphere, a two-dimensional shape (recall from the discussion in Chapter 8 that the surface of a sphere is two-dimensional because you need two pieces of information—like latitude and longitude on the earth's surface—to specify a location). As with the circle, you should envision the sphere tacked on to every point of the usual dimensions, even though in Figure 12.8a, to keep the image clear, we draw only those that lie on the intersections of grid lines. In a universe of this sort, you would need a total of five pieces of information to locate a position in space: three pieces to locate your position in the big dimensions (street, cross street, floor number) and two pieces to locate your position on the sphere (latitude, longitude) tacked on at that point. Certainly, if the sphere's radius were tiny—billions of times smaller than an atom— the last two pieces of information wouldn't matter much for comparatively large beings like ourselves. Nevertheless, the extra dimension would be an integral part of the ultramicroscopic makeup of the spatial fabric. An ultramicroscopic worm would need all five pieces of information and, if we include time, it would need six pieces of information in order to show up at the right dinner party at the right time.
Figure 12.8 A close-up of a universe with the three usual dimensions, represented by the grid, and ( a ) two curled-up dimensions, in the form of hollow spheres, and ( b ) three curled-up dimensions in the form of solid balls.
Let's go one dimension further. In Figure 12.8a, we considered only the surface of the spheres. Imagine now that, as in Figure 12.8b, the fabric of space also includes the interior of the spheres—our little Planck-sized worm can burrow into the sphere, as ordinary worms do with apples, and freely move throughout its interior. To specify the worm's location would now require six pieces of information: three to locate its position in the usual extended spatial dimensions, and three more to locate its position in the ball tacked on to that point (latitude, longitude, depth of penetration). Together with time, this is therefore an example of a universe with seven spacetime dimensions.
Now comes a leap. Although it is impossible to draw, imagine that at every point in the three extended dimensions of everyday life, the universe has not one extra dimension as in Figure 12.7, not two extra dimensions as in Figure 12.8a, not three extra dimensions as in Figure 12.8b, but six extra space dimensions. I certainly can't visualize this and I've never met anyone who can. But its meaning is clear. To specify the spatial location of a Planck-sized worm in such a universe requires nine pieces of information: three to locate its position in the usual extended dimensions and six more to locate its position in the curled-up dimensions tacked on to that point. When time is also taken into account, this is a ten-spacetime-dimensional universe, as required by the equations of string theory. If the extra six dimensions are curled up small enough, they would easily have escaped detection.
The Shape of Hidden Dimensions
The equations of string theory actually determine more than just the number of spatial dimensions. They also determine the kinds of shapes the extra dimensions can assume. 18 In the figures above, we focused on the simplest of shapes—circles, hollow spheres, solid balls—but the equations of string theory pick out a significantly more complicated class of six-dimensional shapes known as Calabi-Yau shapes or Calabi-Yau spaces. These shapes are named after two mathematicians, Eugenio Calabi and Shing-Tung Yau, who discovered them mathematically long before their relevance to string theory was realized; a rough illustration of one example is given in Figure 12.9a. Bear in mind that in this figure a two-dimensional graphic illustrates a six-dimensional object, and this results in a variety of significant distortions. Even so, the picture gives a rough sense of what these shapes look like. If the particular Calabi-Yau shape in Figure 12.9a constituted the extra six dimensions in string theory, on ultramicroscopic scales space would have the form illustrated in Figure 12.9b. As the Calabi-Yau shape would be tacked on to every point in the usual three dimensions, you and I and everyone else would right now be surrounded by and filled with these little shapes. Literally, as you walk from one place to another, your body would move through all nine dimensions, rapidly and repeatedly circumnavigating the entire shape, on average making it seem as if you weren't moving through the extra six dimensions at all.
Figure 12.9: ( a ) One example of a Calabi-Yau shape. ( b ) A highly magnified portion of space with additional dimensions in the form of a tiny Calabi-Yau shape.
If these ideas are right, the ultramicroscopic fabric of the cosmos is embroidered with the richest of textures.
String Physics and Extra Dimensions
The beauty of general relativity is that the physics of gravity is controlled by the geometry of space. With the extra spatial dimensions proposed by string theory, you'd naturally guess that the power of geometry to determine physics would substantially increase. And it does. Let's first see this by taking up a question that I've so far skirted. Why does string theory require ten spacetime dimensions? This is a tough question to answer nonmathematically, but let me explain enough to illustrate how it comes down to an interplay of geometry and physics.
Imagine a string that's constrained to vibrate only on the two-dimensional surface of a flat tabletop. The string will be able to execute a variety of vibrational patterns, but only those involving motion in the left/right and back/forth directions of the table's surface. If the string is then released to vibrate in the third dimension, motion
in the up/down dimension that leaves the table's surface, additional vibrational patterns become accessible. Now, although it is hard to picture in more than three dimensions, this conclusion—more dimensions means more vibrational patterns—is general. If a string can vibrate in a fourth spatial dimension, it can execute more vibrational patterns than it could in only three; if a string can vibrate in a fifth spatial dimension, it can execute more vibrational patterns than it could in only four; and so on. This is an important realization, because there is an equation in string theory that demands that the number of independent vibrational patterns meet a very precise constraint. If the constraint is violated, the mathematics of string theory falls apart and its equations are rendered meaningless. In a universe with three space dimensions, the number of vibrational patterns is too small and the constraint is not met; with four space dimensions, the number of vibrational patterns is still too small; with five, six, seven, or eight dimensions it is still too small; but with nine space dimensions, the constraint on the number of vibrational patterns is satisfied perfectly. And that's how string theory determines the number of space dimensions. 36 19