Star Trek: Klingon Bird-of-Prey Haynes Manual

Home > Other > Star Trek: Klingon Bird-of-Prey Haynes Manual > Page 2
Star Trek: Klingon Bird-of-Prey Haynes Manual Page 2

by Ben Robinson


  Whereas the outside of a Bird-of-Prey rarely varies, the design of the bridges can be as different as the men who command them. Some versions are dominated by throne-like command chairs on raised platforms with the other bridge officers seated in a well around the edge of the room; others use a periscope-like device that descends from the deck above and allows the commander to target the weapons personally. The most common version places the commander in the center of the room, with the helm and navigation stations directly in front of him, his first officer behind him and other bridge stations around the perimeter of the room.

  Kruge’s Bird-of-Prey confronts the Constitution-class U.S.S. Enterprise in orbit around the Genesis planet.

  B’REL VERSUS K’VORT-CLASS

  Some Birds-of-Prey have featured a periscope-iike device that the captain uses to target the weapons.

  Once a Bird-of-Prey is completed it is delivered to the House that commissioned it, and under Klingon tradition, instantly pledged to serve in the Klingon Defense Force. Klingon Houses vary enormously in size. The most powerful Houses consist of thousands of men, and may control hundreds of ships. For example, in the early 23rd century the House of Jarod controlled over 250 ships. At the opposite end of the scale a smaller House might control just a single ship.

  Following Kahless’s reforms, the Houses all agreed to send their men and ships to serve in the Klingon Defense Force. The administration of this is controlled by the High Council and the major appointments are made by the High Chancellor himself. In theory, the Houses only hold their possessions with the consent of the High Chancellor, who can revoke their privileges and take control of their ships and lands. However, the Chancellor is rarely in a position to do this, and depends on the support of the more powerful houses. As a result, senior appointments can depend as much on family connections as on personal excellence.

  In the centuries after Kahless, the Great Houses all pledged their allegiance to an Emperor, but in practice individual captains and the leaders of the Houses formed an often uneasy alliance that kept the Empire together. Little has changed in the last thousand years and as such the captain of a Klingon ship has very real political power.

  The leader of a Great House appoints the captain and crew of each ship, and their first loyalty is almost always to him before the Emperor or the High Chancellor. In times of conflict it is not uncommon for the Houses to form power blocks that are opposed to the High Chancellor or one another. It is less common, but not unheard of, for the captains of individual ships to disobey orders given by the leader of their House and choose their own side in a conflict.

  The individual Houses also have their own facilities for developing new weapons, and as soon as cloaking technology was acquired several of the more powerful Houses started looking for ways to overcome its limitations. Scientists from the House of Chang managed to develop the device to a point where ships could actually fire while cloaked. Because of the way Klingon society operates, this technology was not shared with the other Houses or the Klingon Defense Force. Chang preferred to keep the technology to himself and to use it in a bid for power.

  In the 2290s General Chang used a prototype Bird-of-Prey with an advanced cloaking device to disrupt peace negotiations with the Federation.

  CLOAKING DEVICE HISTORY

  All Birds-of-Prey are fitted with a cloaking device that renders the ship invisible to both the naked eye and almost all forms of sensor. The Klingons first acquired cloaking technology in 2268 during a brief alliance with the Romulan Star Empire and since then it has become a standard feature on all Klingon ships. Over the years, it has been continually upgraded but, apart from a few brief periods, has always had some important limitations: a cloaked ship cannot communicate with anyone else or fire any kind of weapon. The cloak works by generating a quantum phase bubble around the ship that instantaneously teleports EM radiation to the other side of the cloaked area.

  The Klingons had been interested in cloaking technology since their first encounters with the Romulans in the 22nd century, but Klingon scientists had never been able to develop an effective version of their own. By the mid-2260s both the Klingon and Romulan empires had become concerned about the expansion of the United Federation of Planets, which was growing at the fastest rate in its history. The Federation, which had been at war with both empires, was gaining new members and resources at a phenomenal rate. Although the Romulans and Klingons were extremely suspicious of one another it was clear to them that they were in danger of being marginalized.

  The Romulans had emerged from isolation in 2266 and tried the Federation’s defenses with a new generation of cloaked ship. Although the cloaking technology appeared promising, the ship failed to return, leading many in the Romulan military to feel that it was underpowered. In particular they were concerned that Federation ships had greater firepower, better defenses and could achieve higher speeds.

  The following year the Klingons launched an all-out war against the Federation, but were halted by an extremely powerful species, called the Organians, who imposed a peace treaty on them. To many Klingons the Organian peace treaty seemed to favor the Federation, since it set up a system where the control of unaligned worlds was determined by the economic rather than military benefits either power could offer. The Klingons were concerned that the Federation was acquiring valuable resources that would leave them much better equipped for war.

  In late 2267, a Romulan delegation approached the Klingon Empire, offering them access to cloaking and computer technology in return for starship designs and disruptor technology. Many members of the Klingon High Council were suspicious of the Romulans’ motives, but the lure of cloaking technology proved too great and by early 2268 the Romulan Senate and the Klingon High Council had signed a treaty that provided for a limited exchange of technology and offered guarantees about encroaching into one another’s space.

  The first D7-class Klingon cruisers were delivered to the Romulans within a matter of months, while the Romulans handed over four working cloaking devices. The cloaking devices required a certain amount of modification before they could work with the Klingon ships—in particular the Klingon warp engines had to be realigned to reduce their radiation emissions, and top speeds had to be cut to avoid detection. The cloaking devices also required constant monitoring. Only a handful of engineers in the Imperial Fleet understood how to operate them and Klingon captains had little idea of how to adjust their tactics.

  The Federation was so alarmed by this development that they risked a major diplomatic incident by breaching the Romulan Neutral Zone and stealing a cloaking device from one of the newly supplied D7 battle cruisers. The Klingons proved that Starfleet’s concern was justified the following year, when the Klingon commanders Kor and Kang took two cloaked divisions of D5 battle cruisers to launch a surprise attack on Caleb IV. The attack was devastating and became known as a famous victory.

  However, even at this early stage the Romulan-Klingon alliance was showing signs of stress. Despite the assurances given in the treaty, the Romulans took advantage of their new battle cruiser technology to annex several disputed worlds along the Klingon-Romulan border. The Klingons retaliated and within a matter of months the treaty was in tatters.

  The Klingons first acquired cloaking technology in 2268 as part of a technology exchange with the Romulans. In return the Romulans gained access to the designs for Klingon battle cruisers.

  The cloaking device normally prevents a cloaked ship from firing its weapons. This limitation was briefly overcome by General Chang in the early 2290s who developed a Bird-of-Prey that could fire torpedoes while cloaked.

  Meanwhile, the Federation appeared to be developing new countermeasures against the cloaking device. The balance of power had shifted, and although hostilities continued, the Klingons drew back from all-out war. They took advantage of the situation to roll out the technology to the entire Imperial Fleet, in a massive program that saw every ship from the tiniest scout to the largest warship fit
ted with a cloaking device.

  The Great Houses set their scientists to improving the cloak and overcoming its limitations, which prevented a cloaked ship from firing any kind of weaponry. By 2292 the House of Chang had developed a prototype Bird-of-Prey that could fire while cloaked. This relied on a special modification that allowed photon torpedoes to be fired through the cloaking field. Since the prototype was destroyed and Chang did not make the technology available to the Klingon Defense Force, it is not absolutely clear how the modification worked. It is thought to have involved an active, energized surface material that was built into the torpedo housings. This meant that the torpedoes could pass through the cloaking field without being affected by the spatial distortion. The modifications reduced the overall effectiveness of the cloak, and exposed the General’s vessel to repeated—and fatal—return fire from Starfleet’s Enterprise and Excelsior starships.

  After the 2270s the Klingons and Romulans did not share cloaking technology until the Dominion War and as a result the approaches have diverged slightly. The Romulans in particular have experimented with methods of moving an entire ship out of phase with the normal universe, not only making it undetectable but potentially immune to weapons fire. The Klingons have concentrated on methods of firing while cloaked. To date neither of these approaches have met with lasting success.

  The Dominion War posed such a great threat that the Klingons and the Romulans eventually allowed a modification of their treaties with the Federation so that the U.S.S. Defiant could be equipped with a cloaking device. Klingon scientists had to redouble their efforts to improve the cloaking device after it emerged that the Dominion could detect cloaked ships. The cloak remains a vital asset for the Klingon Empire, despite its controversial history connected with the Romulans, and it is now impossible to imagine a Bird-of-Prey that cannot conceal itself from its enemies.

  During the Dominion War the Klingon Empire modified its treaties with the Federation to allow the Federation to equip one of its warships, the U.S.S. Defiant, with a Romulan cloaking device.

  WING POSITIONS

  The warp wings on the Bird-of-Prey are variable geometry, which means they have the capability of altering their angle for three distinct flight modes: Flight, in which the wings are held out roughly horizontal to the ship; Attack, where the wings are dropped to a 45-degree angle bellow the ship; and Landing, where the wings are swept up keeping them free of the ground. Each of these three positions has distinct advantages and alters the way the wings function, and the position is determined by either internal hardware configurations or external conditions, with movements achieved by a redundant series of heavy-duty electromechanical actuators.

  The wings are each attached to the hull structure by way of a substantial hinge assembly 1.74 meters in diameter outboard of Deck 5. Six identical pairs of rotational mounts are gamma welded to each side of the aft hull and to each wing box in a microgravity assembly fixture. The fixture is equipped with 235 precision optical and magnetic sensor guides to align the hinge sections to accept the tempered duranium center cylinder.

  Six pairs of actuator motors and multiple position and torsion sensors are integrated within the rotational joints. When the wings are moved, the actuators are controlled by the central computer according to the ship’s real-time flight mode, or commanded by the helm officer within the flight safety limits perceived by the navigational system. Normal motion rates are kept to within 5–8 degrees per second while in space, though emergency motor power can be applied to move though 14 degrees per second. Power for the actuators comes from three pairs of medium step-down plasma nodes.

  In the flight position the wings take on the role that is served by warp nacelles on most other vessels, with superheated plasma energizing warp coils to create a warp field around the ship. When the Bird-of-Prey is in this mode the wings are generally level with the horizontal plane of the ship and with each other. Standard warp flight for the Bird-of-Prey involves energy fields that move the vessel most efficiently when they are coplanar, emanating from the warp plates vertically and aft and interacting only minimally above or below the ship.

  The transverse plasma conduit connecting the warp reactors to the wings on Deck 5 incorporates a rotating joint, which is fully open in the cruise configuration. This allows for the most speed and faster-than-light (FTL) maneuvering options in transport or battle situations.

  Attack maneuvers with the disruptors powered up require the wings to transition to the dropped position, at least 43 degrees away from horizontal. This transition can occur while the ship is slowing from warp to sublight, and in fact the lowered wings can facilitate the bleed-off of warp field energy. This procedure is sometimes used as a braking tactic to allow a Bird-of-Prey to switch from being pursued to becoming the pursuer. The dropped wings create a constriction in the warp plasma conduit necessary for the disruptors to pressurize properly and form plasma bolts dense enough to inflict major damage.

  Disruptor bolts can be fired at more flattened angles, though the energy contained in each bolt will be diminished. In some cases, this may be enough to disable an enemy vessel, especially if boarding and not immediate destruction is the objective. The attack position has the added benefit of protecting the lower decks in the aft hull, where the warp cores are situated, plus the ship’s neck structure from certain angles. While the defensive shield grid and armor plating remain the primary lines of defense, the wings can shadow the ship from incoming energy weapons fire or projectile weapon detonation.

  Landing position elevates the wings to approximately 40 degrees above the plane of the hinge. This procedure lifts the wingtip disruptors safely above ground level and minimizes hardware impacts with support crews and maintenance equipment. It also helps to center the wing mass over the deployed landing gear. The wingtip separation distance is decreased, allowing for touchdowns in areas that might be slightly less open than at dedicated bases. Once on the ground, the wings can be lowered for repair work or routine checks.

  Structural rigidity at each flight position is enhanced by two distinctive sets of interleaved hinge plates on each side of the ship. The upper halves are attached to the hull, the lower halves to the warp wing box. The plates, fabricated from duranium titanide, are allowed to slide past each other until exposed to a modified tractor field, which causes them to grab and lock. The locked plates are particularly helpful during planetary landings and takeoffs where the wings need to be supported against gravity, even with the help of the mass-lightening impulse engines.

  I.K.S. ROTARRAN

  The I.K.S. Rotarran is a typical B’rel-class vessel, designed for swift raids and brutal combat. Under General Martok, who made her his flagship, she played a vital role in the Dominion War, when she took part in many famous conflicts including the Battles of Chin’toka and Cardassia. Her victories under Martok’s command made her one of the most famous ships in Klingon history.

  In terms of layout there was nothing extraordinary about the Rotarran—she had standard weaponry and engines, with wingtip plasma disruptors and the classic twin warp cores. If anything she was even leaner than other Birds-of-Prey, with Martok placing great store in the traditional Klingon virtues of spartan living and devotion to duty.

  Since the end of the Dominion War and Martok’s elevation to High Chancellor, the Rotarran has been held up as something of an ideal as if she were the perfect Bird-of-Prey and she is the subject of several operas and epic poems. The reality is much more complicated. For example, the crew was not exclusively Klingon and even Martok himself freely admits that the Rotarran wasn’t always well maintained, that the warriors aboard were a ragbag bunch of veterans and raw recruits and they often owed their survival as much to luck as skill. But all of this adds to the legend and few Klingon warriors believe there could have been anything more glorious than serving on the Rotarran as she plunged into the heart of the Dominion fleet.

  CUTAWAY

  The I.K.S. Rotarran followed the classic layout of a Bird
-of-Prey. She measured out at 139m from stern to bow, and covered seven decks from top to bottom. The interior layout was essentially symmetrical with each side containing systems that worked with their counterparts to keep the ship operating even if it was severely damaged. The rear of the ship was dominated by the warp and impulse engines, with the large sweeping wings containing kovenium monoteserite warp ‘coils’ energised by superheated plasma to generate the warp fields.

  The body of the ship provided a significant habitable volume although much of this was given over to cargo bays that could be converted to accommodate troops if the ship was involved in a planetary invasion. As befits a Klingon ship, the regular crew had spartan accommodation with no concessions to comfort.

  Weaponry consisted of twin disruptors that were at the outer edges of the warp wings where they could tap into plasma from the engines. In the dropped, attack position they could call on highly pressurized plasma from the warp engines to produce disruptor bolts that caused the maximum damage. The nose section contained a photon torpedo launcher that could fire a variety of torpedoes, probes and antimatter mines.

  The nose section was very much the nerve center of the ship and contained the main bridge and main computer, both of which were tied into all the other ship’s systems. It also contained the Rotarran’s cloaking generator and emitter, which rendered the ship invisible to sensors, giving it a huge tactical advantage in combat.

 

‹ Prev