Book Read Free

Fixing the Sky

Page 20

by James Rodger Fleming


  In the late nineteenth century, supercooled cloud conditions were known, and meteorologists were hinting at the possibility that ice-phase processes could initiate precipitation. In 1895 Alexander McAdie wrote that, by analogy, “a snowflake or ice crystal falling into [a supercooled cloud] may suffice to start a sudden congelation, just as we see ice needles dart in all directions when a chilled surface of a still pond is disturbed.” Speaking of towering convective clouds—which are certainly large but not quiescent like a pond—McAdie noted, “We liken this monstrous cloud to a huge gun, loaded and quiet, but with a trigger so delicately set that a falling snowflake would discharge it.”13 He predicted that “successful rain engineers will come in time ... from the ranks of those who study and clearly understand the physical processes of cloud formation” (77). The key word here is “trigger,” which is just what the General Electric scientists were attempting to do in 1946.

  Readers of the September 1930 issue of Popular Mechanics learned that a Dutch scientist, August Veraart, had recently “succeeded” in producing rain by throwing dry ice power (solid CO2) on clouds.14 Veraart also claimed to be able to produce more sunshine by conducting his seeding in the early morning, which cleared the sky of fog, mist, and clouds for the rest of the day. From a small airplane flying above the Zuider Zee, Veraart scattered some 3,300 pounds of crushed ice particles cooled to a temperature of–78°C (–108°F) into growing cumulus clouds. Observers testified that the intervention was followed by falling streaks of rain, although there is no evidence that the rain actually reached the ground.15 In 1931 Veraart published a small popular book in Dutch, now quite rare, titled More Sunshine in the Cloudy North, More Rain in the Tropics. Here he presented a history of his involvement in rainmaking, an overview of his experiments and theories, and a summary of his wide, sweeping claims.16

  Over the years, Veraart said, he had tried an assortment of seeding techniques involving dry ice, supercooled water-ice, and ammonium salts. He theorized that seeding particles could upset the stability or release instability in clouds, release latent heat of condensation, and perhaps influence their electrical charges to either dissolve them or condense their moisture into rain. As a kind of budding climate engineer, he speculated that the widespread application of such techniques could produce both more rain (at night) and more sunshine, while serving to purify the air and reduce the frequency and severity of storms. Veraart thought that this would make the world better by rearranging climate zones that were either too hot, too cold, too wet, or too dry.

  Veraart died in 1932, before Bergeron and Findeisen published their work on cloud physics. Meteorologists have minimized Veraart’s contribution, even though he was using the “right” substance, by claiming that he probably did not understand the mechanism involved in the precipitation process he triggered, he did not realize that the dry ice was effective in development of ice crystals by cooling supercooled clouds, and his success was likely only a coincidence. Veraart’s lack of an academic affiliation and his excessive enthusiasm led Dr. E. van Everdingen, head of the Royal Dutch Meteorological Service, to brand him a “non-meteorologist and charlatan.”17 Meteorologist Horace Byers wrote in 1974 that Veraart’s vague concepts on changing the thermal structure of clouds, modifying temperature inversions, and creating electrical effects were not accepted by the scientific community.18 Thus, instead of Veraart, it is the scientists at GE who are remembered as the pioneers in weather control.

  Schaefer was trained as a machinist and toolmaker at GE and joined Langmuir’s research team in 1932, specializing in building models, devices, and prototypes. He was involved in outdoor activities, including nature study, preservation, and hiking in the Adirondack Mountains. In 1940 he became widely known for his method of replicating individual snowflakes using a thin plastic coating. On July 12, 1946, Schaefer attempted to cool off a home freezer that he was using as a cloud chamber by dropping a chunk of dry ice into it. To his surprise, he saw the cold cloud instantly transform into millions of tiny ice crystals (figure 5.1). Later measurements indicated that he had reduced the temperature of the chamber from–12 to–35°C (10 to–31°F) and had generated an ice cloud from “supercooled” water droplets. His GE laboratory notebook for the day reads: “I have just finished a set of experiments in the laboratory which I believe points out the mechanism for the production of myriads of ice crystals.”19 Schaefer later recalled

  It was a serendipitous event, and I was smart enough to figure out just what happened ... so I took the big chunk out of the chamber and used the smaller one and a still smaller one until I finally found that by producing the supercooled cloud, and then scratching a piece of dry ice held above the chamber, a tiny grain would just flood the chamber with ice crystals. So I knew I had something pretty important.20

  The following week, on July 17, when Langmuir returned from a trip and witnessed the effect, he scribbled in his laboratory notebook “Control of Weather” above his analysis of Schaefer’s discovery.21 Schaefer recalled that Langmuir “was just ecstatic and he was very excited and said, ‘Well, we’ve got to get into the atmosphere and see if we can do things with natural clouds.’ So I immediately began to plan ... to seed a natural cloud.”22

  Speculation was rampant that summer about the possibilities of weather control. On July 31, Schaefer made some rough calculations that indicated that if a 50-pound block of dry ice, costing $2.50, could be ground up and dispersed into a cloud from an airplane, hundreds of thousands of pounds of snow could be generated.23 Like the electrified sand researchers of the 1920s, Schaefer supposed that “precipitation” not reaching the ground would serve to dry out the clouds and dissipate them. “Thus,” he speculated, “it would seem possible with the right arrangements—barrage or captive balloons, rockets, etc., etc., to clear areas around airports, on flight paths, or possibly to precipitate snow in mountainous regions where it could be used for water storage and sport and prevent it from being deposited in cities!”24 Langmuir too was engaged in calculations of his own about the vast economic and practical consequences of seeding natural clouds with dry ice.

  5.1 Vincent Schaefer reenacting his discovery on July 12, 1946, that sparked fresh weather-control experiments, as Irving Langmuir (left) and Bernard Vonnegut watch. Colleagues have said that he did this on innumerable occasions for anyone who would watch. (SCHAEFER PAPERS)

  The Rainmaker of Yore

  The public had not yet heard about cloud seeding in September 1946 when the midwestern novelist and screenwriter Homer Croy reminisced in Harper’s Magazine about the rainmakers of his youth. The article was an instant anachronism: “One day when I was just a boy, my father said, ‘Get ready and we’ll go to town and see the rainmaker.’ No work! Maybe a candy mouse. Maybe some ‘lickorish.’ ... There were always wonderful things to be had in town. It was not long before we were in the hack and jogging along the dusty road. There, on each side of us, was the suffering, gasping, dying corn.”25 Croy recalled that in the 1890s, especially during times of drought, many people sought the services of rainmakers. He and his family gathered that day with other citizens at the railroad depot where the Rock Island Railroad had sent its rainmaker to work his magic from a specially equipped boxcar. There was

  a great stirring inside the mysterious car and in a few minutes a grayish gas (that was going to save our corn) began coming out the stove-pipe hole in the roof. In no time the gas hit our noses—the most evil-smelling stuff we had ever encountered. But if it took that to make it rain, why, all well and good, we could stand it. The theory, as most of us knew by this time, was that this gas went up and drops of moisture coagulated around the particles and down came the rain.... It seemed simple and logical to us. Up went the gas and up went our eyes and up went our hopes ... sometimes it took only two or three hours, sometimes it took two or three days. (215)

  But by the end of the afternoon, only a little cloud, “about as big as a horseblanket,” appeared and suddenly disappeared in the otherwise cloudless sk
y. Croy and his family returned home that evening disappointed but not disillusioned. As they prepared for bed, they heard, on the tin roof of the shed, a hopeful pitter-pat that soon became a downpour—the soaking rains had started. The next morning “everything in all the world was all right. The drought was broken. And we knew why it had been broken.... And we were thankful to God for the wonderful man who had come among us” (217).

  In his essay, Croy relegated these events to the gullibility of a bygone era, concluding, “There is now not a farmer in all the corn belt who believes in rainmakers. ... It hardly seems possible today that I once went to town to see a rainmaker save our crops, but I believed in it then and so did most people” (220). The timing could not have been more ironic. Croy’s article was published in Harper’s just after Schaefer’s discovery of dry ice seeding and just before General Electric announced it to the public, initiating a new wave of faith and hope in weather control—and a resurgence of commercial rainmakers.

  GE Tells the World

  On November 13, 1946, the General Electric News Bureau announced that laboratory cold box experiments had succeeded in making snowflakes and that scientists would soon conduct an outdoor experiment to see if they could exercise “some human control over snow clouds.”26 The New York Times headline read, “Scientist Creates Real Snowflakes.”27 November 13 was also the day that Schaefer conducted an airborne test by dropping 6 pounds of dry ice pellets into a cold cloud over Mount Greylock in the nearby Berkshires, creating ice crystals and streaks of snow along a 3-mile path. This marked the beginning of a new era of cloud seeding.28 Here is Schaefer’s account of the test flight:

  At 9:30 am Curtis G. Talbot of the GE Flight Test Division at the Schenectady airport piloted a Fairchild cabin plane taking off from the east west runway. I was in the plane with Curt with a camera, 6 pounds of dry ice, and plans for attempting the first large scale test of converting a supercooled cloud to ice crystals. As we took off of the ground, temperature was 6°C [43°F]. In the sky were long stratus clouds isolated from each other and at an altitude of what appeared to be about 10,000 feet.

  We started climbing immediately and continued for more than an hour ... [reaching a cloud at 14,000 feet that appeared to be supercooled, with temperature estimated to be–18.5°C [1.3°F]. Some brilliant iridescent colors on the edges, and the thermometer bulb beginning to show a light deposit of ice]. At 10:37 am Curt flew into the cloud and I started the dispenser in operation. We dropped about three pounds [of dry ice] and then swung around and headed south.

  About this time I looked toward the rear and was thrilled to see long streams of snow falling from the base of the cloud which we had just passed. I shouted to Curt to swing around and as we did so we passed through a mass of glistening snow crystals! We then saw a brilliant 22° halo and adjacent parhelia. ... We made another run through a dense portion of the unseeded cloud during which time I dispensed about three more pounds of crushed dry ice (pellets from 5/16” down to sugar size). This was done by opening the window and letting the suction of the passing air remove it. We then swung west of the cloud and observed draperies of snow which seemed to hang for 2–3,000 feet below us and noted the cloud drying up rapidly.... While still in the cloud we saw the glinting crystals all over.29

  The next lines in Schaefer’s notebook reveal the true excitement of the moment: “I turned to Curt and we shook hands as I said ‘We did it!’ Needless to say we were quite excited. The rapidity with which the CO2 dispensed from the window seemed to affect the cloud was amazing. It seemed as though it almost exploded the effect was so widespread and rapid.” Later, back at the airport, Langmuir rushed out enthusiastically to congratulate the experimenters, praising the remarkable view from the airport control tower and exclaiming that only minutes after the cloud-seeding run had begun, he had seen long streamers of falling snow pouring out of the base of the cloud more than fifty miles away.

  C. Guy Suits, GE vice president and director of research, immediately wrote a memo recommending access to a better airplane, either commercial or military, since the one operated by GE could not fly over 14,000 feet. Demonstrating his easy access to the military, he wrote, “We might want the Army Air Force to give us some help. I think a call to [Major General Curtis E.] LeMay would be helpful in this connection, particularly if [he knows] about the preliminary result of the experiment.”30

  The following day, GE told the story in detail, framing it as a triumph of scientific prediction with seemingly limitless practical possibilities: “Schenectady, NY, Nov. 14, 1946—Scientists of the General Electric Company, flying in an airplane over Greylock Mountain in western Massachusetts yesterday, conducted experiments with a cloud three miles long, and were successful in transforming the cloud into snow.”31 Langmuir claimed that this result “completely fulfilled” predictions based on laboratory experiments and calculations. If one pellet of dry ice, “about the size of a pea,” could precipitate several tons of snow, he predicted that “a single plane could generate hundreds of millions of tons of snow” over mountain ski resorts, possibly diverting the snowfall from major cities. Or, depending on conditions, perhaps the seeding technique could be used to clear fogs over airports and harbors or prevent aircraft icing problems. A flurry of news reports followed leaving the lab “snowed under” by hundreds of clippings (figure 5.2). The New York Times read, “Three-mile cloud made into snow by dry ice dropped from plane ... opening vista of moisture control by man.” A banner headline in the Boston Globe announced, “Snowstorm Manufactured.”32 Louis Gathman and August Veraart rolled over in their graves.

  Letters, postcards, and telegrams flooded in, too. One of them asked for indoor snow for a Christmas pageant to replace the white corn flakes used the previous year; another asked for artificial snow for a college winter carnival; and a ski operator seeking market advantage asked for advice. A search-and-rescue operation on Mount Rainier urgently asked GE to clear out the clouds so the team might be able to spot a downed aircraft. Movie producers requested tailor-made blizzards. A Los Angeles air pollution officer wrote to Schaefer, asking him for advice on how to clear the air over the city. The chairman of the Kansas State Chamber of Commerce sent a telegram to President Harry Truman, asking for relief of the drought conditions using GE technology. This stimulated a reply from Francis W. Reichelderfer, chief of the U.S. Weather Bureau, to the effect that dry ice seeding worked only in special circumstances, and even then the results were controversial, since no one had established a method to determine how much was caused by human intervention and how much by natural processes. A cane sugar producer in Hawaii wrote that he, too, had tried, in 1941, to make it rain, cooling the clouds by launching slabs of dry ice into the valley fog from a huge slingshot on the mountain summit. Since he was working with warm clouds, he would have needed an enormous amount of dry ice. A newspaper editorial wondered if GE would be forming a “snow cartel” to sell us a white Christmas.33

  5.2 Avalanche of news articles received by General Electric after press releases of November 13 and 14, 1946. (SCHAEFER PAPERS)

  Threat of Litigation

  An extremely optimistic announcement of progress in weather modification appeared in the General Electric Annual Report for 1947: “Further experiments in weather control led to a new knowledge which, it is believed now, will result in inestimable benefits for mankind.”34 When one of Schaefer’s cloud-seeding attempts coincided with an 8-inch snowfall in upstate New York—earlier the weather bureau had forecast “fair and warmer”—Langmuir was quick to claim that cloud seeding had “triggered” the storm. Cloud seeding was becoming a controversial issue, and Langmuir’s exaggerated claims threatened to take the company into litigious territory, far beyond the limits of normal corporate support for research.35

  On November 18, 1946, just three days after the public learned about cloud seeding, Simeon H. F. Goldstein, an insurance broker in New York City, wrote to General Electric warning of the need for liability coverage and offering insura
nce services “to protect your Company against lawsuits for bodily injury and property damage resulting from artificial snowstorms produced at your direction”:

  The newspapers report that your Company has developed a method of manufacturing snow, and will soon use it in the field. This is likely to produce lawsuits against your Company. Traffic accidents, as well as injurious falls by individuals, frequently result from natural snow, and are similarly likely to be caused by artificial snow. Government units, as well as large property-holders, will be put to extra expense in removing snow from roads and thoroughfares. When it melts, snow causes floods. It may also cause direct damage to property which happens to be in the open, as well as to structures which are not fully enclosed.... In addition to the foreseeable results, the complete novelty of the operation means that other sources of liability—unforeseeable both in their nature and extent—may exist. It would therefore seem dangerous to leave yourselves unprotected in these circumstances. May I hear from you?36

  GE lawyers, fearing a deluge of property damage and personal inconvenience suits, immediately tried to silence Langmuir and his team. Langmuir and Schaefer, however, were riding high on a wave of publicity. They were both outspoken, enthusiastic promoters and popularizers of large-scale weather control. But Langmuir had extra clout and flaunted his Nobel laureate status. In the press and before the meteorological community, Langmuir repeatedly expounded his sensational vision of large-scale weather control and even climate control, with possible military implications. It was beginning to get pathological.37

 

‹ Prev