Book Read Free

Theory and Reality

Page 21

by Peter Godfrey-Smith


  Here I have discussed possible differences in "theoretical style" between men and women. Another possibility is that women will tend to bring a different kind of social interaction to scientific communities. Feminists have sometimes suggested that women are, on the whole, less competitive and more cooperative than men, though many feminists would now want to avoid simple generalizations of this kind (Miner and Longino 1987). If there are any differences of this nature, they may have important consequences for science. The next chapter will discuss the relation between cooperation and competition within science in detail, so we will return to the issue of gender differences then.

  9.5 Science Studies, the Science Wars, and the Sokal Hoax

  One of the main themes in this chapter and the previous one has been the constant expansion of the range of fields seeking to contribute to a general understanding of science. The two examples I have discussed in detail are sociology of science (chapter 8) and feminist criticism (this chapter). As well as this expansion, there has been a blurring of disciplinary boundaries. During the ig 8os a number of workers decided to embrace this trend and create a new approach to studying science that would draw on many different fields without worrying about "whose questions were whose."

  The resulting field is generally known as "Science Studies." The mixture has come to include not only history, sociology, and philosophy but also cultural anthropology, classics, economics, some parts of literary theory, feminist theory, and more marginal fields like semiotics, cultural studies, and critical theory. The aim is to draw on pretty much any field that can contribute our understanding of how science developed, how it works, and what role it has. Recently, the study of technology, as distinct from science, has sometimes been explicitly added as a goal.

  The result of this reorganization has not been a massive breakthrough (as some might have hoped), and it has not been a disaster either (I will explain below why it might be seen that way). The history of recent thinking about science does show that there are good opportunities for cross-fertilization, borrowing, and joint work in this area. But it is not likely that the boundaries between fields will really disappear; philosophers, historians, sociologists, and literary theorists do look at the world somewhat differently. So, of course, we find a mixture of styles of work within Science Studies, ranging from the most sober, intricate historical research to wild flights of fancy that make Bruno Latour look like Rudolf Carnap. I am not denying that there are some distinctive tendencies and emphases in the field as a whole, however; one will be discussed at the end of this chapter.

  Some of the most controversial work in Science Studies is allied to the notorious movement in the humanities known as "postmodernism" (Harvey 1989, Lyotard 1984). Postmodernism is a family of ideas and projects, ranging from architecture through art, history, and philosophy of language. The themes that are relevant to us here have to do with representation and meaning. Postmodernism is part of a recent tradition in the humanities that opposes the idea that language should be analyzed as a system used to represent, or "stand for;" objects and situations in the world. This antirepresentationalist view of language influenced a lot of literary theory, as well as other humanistic disciplines, in the latter part of the twentieth century. Postmodernism is a spectacular outgrowth of that line of thought.

  Sometimes postmodernists seem to be arguing that we, right now, live in a special time in history. We live in a time when a representational role for symbols is being replaced by a new role. The sea of symbols and languages in which we live, and their role in politics and in consumer culture, has undermined ordinary representational relations between symbols and objects. In understanding the role of symbols in our lives, it is no longer useful to apply concepts like accuracy, reference, and truth: behind every symbol lies not a real object, but another symbol. At other times postmodernism seems to become a tremendously obscure way of arguing for extreme forms of relativism, sometimes for a kind of skepticism and donothingism, and for extravagant metaphysical views about how language and reality are related.

  Science Studies was rather welcoming to postmodernism and other adventurous ideas from the humanities. That did not mean that the sober historians of science stopped doing their sober, rigorous work; Science Studies is a diverse entity. However, the relationship between the new approach to science and obscure trends in the humanities affected the image that Science Studies came to have. And in time, there came a backlash.

  The backlash occurred in the form of an attack both on Science Studies and on recent work in the humanities more generally. Some of the backlash arose within science itself; scientists were alarmed at the picture of science being presented to the broader culture. But much of the heat and noise was due to commentators' criticizing larger tends within academia and education. The perception was that science itself was under threat.

  The resulting clash became known as the "Science Wars." Science Studies, and other work covered in this chapter, became a key battle ground. Some of the attacks on this work came from the side of conservatism in political and social thought. Advocates of "traditional" education, both in schools and in universities, worried that transmission of the treasures and values of Western civilization was being undermined by radical leftist faculty members in universities and soft-minded administrators in schools. The humanities had gone to hell, and now they were trying to wreck science as well, via endless relativist bleating that science is "just another approach to knowledge with no special status."

  Although some of these battles had a simple political structure, the most influential and interesting episode did not. In 1994 an American physicist, Alan Sokal, submitted a paper to a literary-political journal called Social Text, which was doing a special issue on science. The paper was a parody of radical work in Science Studies; it used the jargon of postmodernism to discuss progressive political possibilities implicit in recent mathematical physics. The title of the paper gives a sense of the style: "Transgressing the Boundaries: Toward a Transformative Hermeneutics of Quantum Gravity." The argument of the paper was completely ridiculous and often quite funny. The aim was to see if the paper would be accepted and printed by the journal; Sokal believed that this would show the field had lost all intellectual standards and would print anything that used the right buzzwords and expressed the appropriate political sentiments.

  Social Text published the paper (Sokal 1996b), and Sokal revealed his hoax in the journal Lingua Franca (1996a), an irreverent journal of academic life (sadly, defunct, at least for now). The uproar reverberated across the academic world and also made the newspapers. One of the things that made Sokal's attack so effective was that he was not writing from the point of view of conservative politics. He presented himself as a left-winger who felt that the Left had lost its way. The siren song of trendy French philosophy and literary theory had led the Left, and "progressive" politics more generally, away from its earlier alliance with science and landed it in a useless and pretentious quagmire.

  Many philosophers in the English-speaking world felt vindicated by the Sokal hoax. Although English-speaking philosophy had produced radical ideas about science, for the most part it had not accepted postmodernism and other French-influenced literary-philosophical movements. Jacques Derrida, perhaps the most famous figure in all the humanities during this period, had never been embraced by the philosophical establishment and was regarded by many as a virtual charlatan. Philosophers thought their own journals were "hoax-proof" because of the philosophical demand for clear argumentation. (I do not know whether this conviction has been tested.)

  Some mainstream philosophers of science, who had been made to look dried-up and boring by decades of racier work in neighboring fields, were elated. At the 1996 meetings of the Philosophy of Science Association, the presidential address was given by Abner Shimony, a senior philosopher of physics. Shimony's address was a reassertion of Enlightenment values, the values of science, democracy, rationality, equality, and secularism. Shimony called Sokal "a he
ro of the enlightenment" for his work in unmasking the foolishness of radical Science Studies.

  Although some philosophers felt vindicated, others felt that damage had been done. In the discussion period after Shimony's talk, Arthur Fine and Philip Kircher, two other prominent philosophers of science, lamented that after years spent bridging gaps between disciplines and establishing dialogue, Sokal's work was likely to polarize everything again. This fear was quite reasonable, as there had often been distrust between some fields. Philosophers might cease to pay any attention to work in neighboring fields, in the belief that they had lost all intellectual standards. Sociologists, on the other side, were likely to think that the underlying conservatism of philosophy had been revealed again; after all, they would say, the smug philosophers had sided with Sokal's cheap shot.

  Science Studies was not seriously damaged by the Sokal hoax, but there have been some lasting effects. As I stressed earlier, the field was always diverse, even though its image to outsiders was sometimes dominated by the most high-risk work. There is less tolerance now for very jargon-laden and obscure writing. This is a good thing, and it is reason enough to be glad of what Sokal did. Internal obsessing about how Science Studies should be conducted is excessive, but it was excessive well before Sokal. More importantly, the fear that the gaps between different fields would widen dramatically has not been realized.

  I have emphasized the mix within Science Studies of "straight" history with the most "bent" literary analysis of science and culture. But the field does exhibit some general tendencies. One is especially relevant here. Science Studies is rather hostile toward the idea of explaining patterns in scientific change in terms of relations between scientific theories and the structure of the world. Kuhn and the sociological work discussed in chapter 8 have left an enduring mark here. The explanations that are most emphatically rejected by Science Studies are explanations of the popularity of a theory in terms of its real accuracy or explanatory power. Explaining the historical role of a theory in terms of our present estimation of its worth is taken to be a bad mistake. And more generally, Science Studies is suspicious of the whole idea of looking at scientific theories in terms of how they relate to the preexisting structure of the world itself. What results is a gap in the account of science that Science Studies provides. After we have described the social structure of science itself, we need to also understand how that social structure and its products connect to the larger natural world within which scientific activity is embedded. This will be one of the themes in the chapters to follow.

  Further Reading

  Keller and Longino, Feminism and Science (1996), and Janet Kourany, The Gender of Science (zooz), are both useful collections. The latter is quite comprehensive and includes the Hrdy paper I use in section 9.3. Hrdy's book The Woman That Never Evolved (1999) is a more detailed discussion of her ideas. Donna Haraway's Primate Visions (11989) is a very detailed historical and sociological discussion of primatology from a feminist point of view. For another interesting feminist case study, see Elisabeth Lloyd's work on theories of the evolution of female orgasm (11993).

  Harding, The Science Question in Feminism (x986), and Longino, Science as Social Knowledge (r99o), are two of the most influential books in feminist epistemology as applied to science. The Monist had a special issue on feminist epistemology in 1994.

  Mario Biagioli, The Science Studies Reader (1999), is a good collection that illustrates the diversity of work in that field. For the Science Wars, see Gross and Levitt, Higher Superstition (1994), which includes criticisms of Bloor, Latour, Shapin, Schaffer, Harding, Longino, and various others I have discussed in these chapters. See also Koertge, A House Built on Sand (1998). The Sokal hoax is the subject of a book (of that name) edited by the Lingua Franca editors (zooo). There is also a mass of material about the Sokal hoax on the World Wide Web; see especially Sokal's site: http://physics.nyu.edu/faculty/sokal/.

  10.1 What Is Naturalism?

  What kind of theory should the philosophy of science try to develop? The logical empiricists had a definite answer to this question: the philosophy of science is concerned above all with the logic of science. By the middle of the 1970s, this view had well and truly broken down. Many wondered whether philosophy had become desiccated and irrelevant. As we saw in the previous chapter, this led to attempts by other fields to annex some of the traditional territory of philosophy of science. If philosophers could not say anything useful about how science works, others would do it instead.

  Many philosophers came to agree that philosophy of science had to go beyond logical analysis, but there was less agreement on what should be done instead. In this chapter we look at one increasingly popular answer to this question: naturalism.

  Naturalism is often summarized by saying that "philosophy should be continuous with science." This slogan sounds nice, but it is hard to work out what it really means. Naturalists reject the idea that philosophy should be sharply separated from other fields. In particular, naturalists hold that there should be some kind of close connection between scientific theories and philosophical theories, but they do not all agree on what this connection should be like. And what does a naturalistic outlook on philosophy mean in practice? Is it any more than a slogan and a label? In this chapter I will describe naturalism in general and then illustrate the naturalistic approach with an example. The next chapter will continue along the same lines. And from this point onward, the book starts to depart from the chronological structure that guided earlier chapters. The remainder of the book is organized more by topic than by chronology.

  A moment ago I said that naturalists hold that philosophy should be continuous with science but do not agree on what this continuity is. Perhaps a more useful summary of naturalism is the idea that philosophy can use results from the sciences to help answer philosophical questions and can do this even in the philosophy of science itself.

  From the perspective of many other philosophical positions, to use scientific ideas when theorizing about science involves a vicious circularity. How can we assume, at the outset, the reliability of the scientific ideas that we are trying to investigate and assess? Surely we have to stand outside of science when we are trying to describe its most general features and assess the integrity of its methods.

  The idea that we should do the philosophy of science from an external and more secure standpoint is often referred to as foundationalism. (This term is sometimes used for other ideas as well.) Foundationalism requires that no assumptions be made about the accuracy of particular scientific ideas when doing philosophy of science. This is because before our philosophical theory is established, the status of scientific work is in doubt. One way to describe naturalism is to say that it is opposed to foundationalism in philosophy.

  Naturalists think that the project of trying to give general philosophical foundations for science is always doomed to fail. They also think that a philosophical foundation is not something science needs in any case. Instead, we can only hope to develop an adequate description of how knowledge and science work if we draw on scientific ideas as we go. And the description of knowledge and science that results will be no more certain or secure than the scientific theories themselves.

  Most philosophers who call themselves naturalists would agree with that sketch. From there on, however, there is a lot of disagreement. "Naturalism" is one of those words that a wide range of people find appealing as a label for themselves. As Elliott Sober likes to say, the term suggests that one's theories contain "no artificial ingredients" Philosophers, like shampoo manufacturers, would always like to call their products "natural." So there is a risk that naturalism as a movement will be swamped by the overuse of the term and will dissolve into platitudes. Despite this risk, "naturalism" is the label I use for most of my own philosophical work, and throughout the rest of this book I will often suggest that naturalism is our best hope for solving the core problems of philosophy of science.

  10.2 Quine, Dewey, and Others
r />   Where did contemporary naturalistic philosophy come from? The birth of modern naturalism is often said to be the publication of W. V. Quine's paper "Epistemology Naturalized" (1969). Certainly Quine's work is very important here, but we should not think of modern naturalism as coming entirely out of Quine. The American philosopher John Dewey is usually thought of as a pragmatist, but during the later part of his career (from roughly 1925 onward) his philosophy was a form of naturalism. In some areas Dewey's version of naturalism is superior to Quine's. But Dewey's philosophy was neglected during the second half of the twentieth century, and Quine is definitely the figure who had the most influence on naturalism. (Quine once acknowledged Dewey as an earlier naturalist, but Quine experts regard this as a polite gesture rather than a sign of real influence.)

  Quine's article "Epistemology Naturalized" made a number of claims. He first attacked the idea that philosophers should give "foundations" for scientific knowledge. Quine's claims on this point have become central to naturalistic philosophy. But Quine also made a more radical claim. He suggested that epistemological questions are so closely tied to questions in scientific psychology that epistemology should not survive as a distinct field at all. Instead, epistemology should be absorbed into psychology. The only questions asked by epistemologists that have any real importance, in Quine's view, are questions best answered by psychology itself. Philosophers should expect that psychology will eventually give us a purely scientific description of how beliefs are formed and how they change, and we should ask for no more.

 

‹ Prev