Unlocking the Past
Page 37
Ribeiro-dos-Santos, A. K. et al. (1996) ‘Heterogeneity of mitochondrial DNA haplotypes in pre-Columbian natives of the Amazon region’, American Journal of Physical Anthropology 101(1): 29-37.
Richards, M. et al. (1996) ‘Paleolithic and Neolithic lineages in the European mitochondrial gene pool’, American Journal of Human Genetics 59: 185-203.
Sajantila, A. et al. (1995) ‘Genes and languages in Europe: an analysis of mitochondrial lineages’, Genome Research 5(1): 42-52.
Semino, O. et al. (1989) ‘Mitochondrial DNA polymorphisms in Italy’, III, ‘Population data from Sicily: a possible quantitation of maternal African ancestry’, Annals of Human Genetics 53: 193-202.
Smith, G. E. (1915) The Migrations of Early Culture; A Study of the Significance of the Geographical Distribution of the Practice of Mummification as Evidence of the Migration of Peoples and the Spread of Certain Customs and Beliefs, Manchester: Manchester University Press.
— (1933) The Diffusion of Culture, London: Watts and Co.
Spriggs, M. (1984) ‘The Lapita cultural complex’, in R. L. and E. Szathmary (eds), Out of Asia, Canberra: Australian National University Press, pp. 185-202.
Starikovskaya, Y. B. et al. (1998) ‘mtDNA diversity in Chukchi and Siberian Eskimos: implications for the New World’, American Journal of Human Genetics 63: 1473-91
Stone, A. C. and Stoneking, M. (1993) ‘Ancient DNA from a pre-Columbian Amerindian population’, American Journal of Physical Anthropology 92: 463-71.
— and — (1996) ‘Genetic analyses of an 8,000-year-old native American skeleton’, Ancient Biomolecules 1(1): 83-7.
— and — (1998) ‘mtDNA analysis of a prehistoric Oneota population: implications for the peopling of the New World’, American Journal of Human Genetics 62: 1153-70.
— and — (1999) ‘Analysis of ancient DNA from a prehistoric Amerindian cemetery’, Philosophical Transactions of the Royal Society of London, Series B, 354: 153-9-
Sykes, B. C. (1999) ‘The molecular genetics of European ancestry’, Philosophical Transactions of the Royal Society, Series B, 354: 131-9.
Sykes, B. C. et al. (1995) ‘The origins of the Polynesians: an interpretation from mitochondrial lineage analysis’, American Journal of Human Genetics 57: 1463-75.
Torroni, A. et al. (1993) ‘Asian affinities and continental radiation of the four founding Native American mtDNAs’, American Journal of Human Genetics 53: 563-90.
Wallace, D. C. and Torroni, A. (1992) ‘American Indian prehistory as written in the mitochondrial DNA: a review’, Human Biology 64(3): 403-16.
Wallace, D. C, Garrison, G. and Knowler, W. C. (1985) ‘Dramatic founder effects in Amerindian mitochondrial DNAs’, American Journal of Physical Anthropology 68: 149-55.
Ward, R. H. et al. (1991) ‘Extensive mitochondrial diversity within a single Amerindian tribe’, Proceedings of the National Academy of Science USA 88: 8720-4.
West, F. H. and West, C. F. (1996) American Beginnings: The Prehistory and Palaeo-ecology of Beringia, Chicago: University of Chicago Press.
8 beyond DNA
Allison, M. J., Castro, N. and Hosseini, A. (1976) ‘ABO blood groups in Peruvian mummies’, American Journal of Physical Anthropology 44: 55-62.
Ascenzi, A. et al. (1985) ‘Immunological detection of hemoglobin in bones of ancient Roman times and Iron and Neolithic ages’, Proceedings of the National Academy of Science USA 82: 7170-2.
Balasse, M., Bocherens, H. and Mariotti, A. (1999) ‘Intra-bone variability of collagen and apatite isotopic composition used as evidence of a change of diet’, Journal of Archaeological Science 26(6): 593-8.
Bocherens, H. et al. (1991)’Isotopic biogeochemistry (13C, 15N) of fossil vertebrate collagen: application to the study of a past food web including Neandertal man’, Journal of Human Evolution 20: 481-92.
Borgognini, S. M. et al. (1979) ‘On the possibility of the MN blood group determination in human bones’, Journal of Human Evolution 8: 725-34.
Boyd, W. C (1959) ‘A possible example of the action of selection in human blood groups?’ Journal of Medical Education 34: 398-9.
Boyd, W. C. and Boyd, L. G. (1933) ‘Blood grouping by means of preserved muscle’, Science 78: 578.
— and — (1937) ‘Blood group testing on 800 mummies’, Journal of Immunology 32: 307-16.
Briggs, D. E. (1999) ‘Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis’, Philosophical Transactions of the Royal Society of London, Series B, 354: 7-17.
Browne, T. (1658) Hydriotaphia, Urne-Buriall, or, A Discourse of the Sepulchrall Urnes lately found in Norfolk, London: ‘Printed for Hen. Browne at the Sign of the Gun in Ivy-Lane’.
Cattaneo, C. et al. (1990) ‘Blood in ancient human bone’, Nature 347: 339.
Cattaneo, C. et al. (1991) ‘Identification of ancient blood and tissue–ELISA and DNA analysis’, Antiquity 65: 878-81.
Cattaneo, C. et al. (1992) ‘Detection of human proteins in buried blood using ELISA and monoclonal antibodies: towards the reliable species identification of blood stains on buried material’, Forensic Science International 57(2): 139-46.
Cattaneo, C. et al. (1992) ‘Reliable identification of human albumin in ancient bone using ELISA and monoclonal antibodies’, American Journal of Physical Anthropology 87(3): 365-72.
Cattaneo, C. et al. (1993) ‘Blood residues on stone tools: indoor and outdoor experiments’, World Archaeology 25(1): 29-43.
Cattaneo, C. et al. (1995) ‘Differential survival of albumin in ancient bone’, Journal of Archaeological Science 22(2): 271-6.
Chrisholm, B. S., Nelson, D. E. and Schwarz, H. P. (1983) ‘Dietary information from delta G13and delta n15measurements’, PACT8: 391-5.
Collins, M. J. et al. (1999) ‘Is osteocalcin stabilised in ancient bones by adsorption to bioapatite?’Ancient Biomolecules 2 (2): 223-33.
Collinson, M. E. et al. (1999) ‘The preservation of plant cuticle in the fossil record: a chemical and microscopical investigation’, Ancient Biomolecules 2 (2): 251-65.
Curry, G. B. (1987) ‘Molecular palaeontology: new life for old molecules’, Trends in Ecology and Evolution 2 (6): 161-5.
Curry, G. B. et al. (1991) ‘Biochemistry of brachiopod intracrystalline molecules’, Philosophical Transactions of the Royal Society of London, Series B, 333: 359–66.
Dickson, J. H. et al. (2000) ‘The omnivorous Tyrolean Iceman: colon contents (meat, cereals, pollen, moss and whipworm) and stable isotope analyses’, Philosophical Transactions of the Royal Society of London, Series B, 355: 1843–9.
Eglinton, G. and Curry, G. B. (eds) (1991) Molecules through Time: Fossil Molecules and Biochemical Systematics, London: Royal Society.
Evershed, R. P. (1990) ‘Preliminary report of the analysis of lipids from samples of skin from seven Dutch bog bodies’, Archaeometry 33: 139-53.
— (1993) ‘Biomolecular archaeology and lipids’, World Archaeology 25 (1): 74-93.
Evershed, R. P. et al. (1995) ‘Preliminary results for the analysis of lipids in ancient bone’, Journal of Archaeological Science 22: 277-90.
Evershed, R. P. et al. (1999) ‘Lipids as carriers of anthropogenic signals from prehistory’, Philosophical Transactions of the Royal Society of London, Series B, 354: 19-31.
Gurfinkel, D. M. and Franklin, U. M. (1988) ‘A study of the feasibility of detecting blood residue on artifacts’, Journal of Archaeological Science 15: 83-97.
Hastorf, C. A. and DeNiro, M. J. (1985) ‘Reconstruction of prehistoric plant production and cooking practices by a new isotopic method’, Nature 315: 489-91.
Hirschfeld, L. and Hirschfeld, H. (1919) ‘Serological differences between the blood of different races’, Lancet 2: 675-8.
Hyland, D. C. and Tersak, J. M. (1990) ‘Identification of the species of origin of residual blood on lithic material’, American Antiquity 55: 104-12.
Jahren, A. H. et al. (1997) ‘Determining stone tool use: chemical and morphological analyses of residues on experimentall
y manufactured stone tools’, Journal of Archaeological Science 24 (3): 245-50.
Lowenstein, J. M. (1980) ‘Species-specific proteins in fossils’, Naturwissenschaften 67 (7): 343-6.
— (1981) ‘Immunological reactions from fossil material’, Philosophical Transactions of the Royal Society of London, Series B, 292: 143-9.
— (1985) ‘Radioimmune assay of mammoth tissue’, Acta Zoologica Fennica 170: 233–5.
Lowenstein, J. M. and Ryder, O. A. (1985) ‘Immunological systematics of the extinct quagga (Equidae)’, Experientia 41 (9): 1192-3.
Lowenstein, J. M., Sarich, V. M. and Richardson, B. J. (1981) ‘Albumin systematics ofthe extinct mammoth and Tasmanian wolf, Nature 291: 409-11.
Lowenstein, J. M. and Scheuenstuhl, G. (1991) ‘Immunological methods in molecular palaeontology’, Philosophical Transactions of the Royal Society of London, Series B, 333: 375-80.
Loy, T. H. (1983) ‘Prehistoric blood residues: detection on tool surfaces and identification of species of origin’, Science 220: 1269-70.
— (1991) ‘Prehistoric organic residues: recent advances in identification, dating, and their antiquity’, in E. Pernicka and G. A. Wagner (eds), Archaeometry ‘90, Basel: Birkhauser Verlag, pp. 645-56.
— (1992) ‘Detection, amplification and identification of 2,800-year-old DNA from blood residues on prehistoric stone tools’, Ancient DNA Newsletter 1(2): 20.
— (1998) ‘Blood on the axe’, New Scientist (12Sept.): 40-3.
Loy, T. H. and Matthaei, K. I. (1994) ‘Species of origin determination from prehistoric blood residues using ancient genomic DNA’, Australasian Biotechnology 4(3): 161–2.
Loy, T. H., Spriggs, M. and Wickler, S. (1992) ‘Direct evidence for human use of plants 28,000 years ago: starch residues on stone artifacts from the northern Solomons’, Antiquity 66: 898-912.
Macko, S. A. et al. (1999) ‘Documenting the diet in ancient human populations throughstable isotope analysis of hair’, Philosophical Transactions of the Royal Society of London, Series B, 354: 65-76.
Newman, M. E. et al. (1997) ‘“Blood” from stones? Probably: a response to Fiedel’, Journal of Archaeological Science 24(11): 1023-7.
Piperno, D. R. (1988) Phytolith Analysis: An Archaeological and Geological Perspective, New York: Academic Press.
Piperno, D. R. and Hoist, I. (1998) ‘The presence of starch grains on prehistoric stonetools from the humid neotropics: indications of early tuber use and agriculture in Panama’’, Journal of Archaeological Science 25(8): 765-76.
Smith, R. and Wilson, M. T. (1990) ‘Detection of haemoglobin in human skeletal remains by ELISA’, Journal of Archaeological Science 17: 255-68.
Springfield, A. C. et al. (1993) ‘Cocaine and metabolites in the hair of ancient Peruviancoca leaf chewers’, Forensic Science International 63: 269-75.
Stankiewicz, A. B. et al. (1997) ‘Preservation of chitin in 25-million-year-old fossils’, Science 276: 1541-3.
Scott, A. W. et al. (1997) ‘Cholesterol as a new source of palaeodietary information: experimental approaches and archaeological applications’, Journal of Archaeological Science 26(6): 705-16.
Sullivan, C. H. and Krueger, H. W. (1983) ‘Carbon isotope ratios of bone apatite andanimal diet reconstruction’, Nature 301: 177-8.
Tuross, N. and Stathoplos, L. (1993) ‘Ancient proteins in fossil bones’, Methods In Enzymology 224: 121-9.
Van der Merwe, N. J. (1992) ‘Light stable isotopes and the reconstruction of prehistoricdiets’, in M. Polland (ed.), New Developments in Archaeological Science, Oxford: Oxford University Press, pp. 247-64.
9 friends and relations
Colson, I. B. et al. (1997) ‘DNA analysis of seven human skeletons excavated from the Terp of Wijnaldum’, Journal of Archaeological Science 24(10): 911-17.
Corach, D. et al. (1997) ‘Additional approaches to DNA typing of skeletal remains: the search for “missing” persons killed during the last dictatorship in Argentina’, Electrophoresis 18: 1608-12.
Delefosse, T. and Hanni, C. (1997) ‘Archeologie moleculaire: relation de parente ausein d’un gisement neolithique’, Comptes rendus des seances de la Societe deBiologie et de ses Filiales 191(4): 521-8.
Gerstenberger, J., Hummel, S. and Herrmann, B. (1998) ‘Assignment of an isolated skeletal element to the skeleton of Duke Christian II through STR-typing’, Ancient Biomolecules 2(1): 63-8.
Gerstenberger, J. et al. (1999) ‘Reconstruction of a historical genealogy by means of STR analysis and Y-haplotyping of ancient DNA’, European Journal of Human Genetics 7(4): 469-77.
Gill, P. et al. (1994) ‘Identification of the remains of the Romanov family by DNA analysis’, Nature Genetics 6: 130-5.
Hagelberg, E., Gray, I. C. and Jeffreys, A. J. (1991) ‘Identification of the skeletal remains of a murder victim by DNA analysis’, Nature 352: 427-9.
Hauswirth, W. W. et al. (1994) ‘Inter- and intrapopulation studies of ancient humans’, Experientia 50(6): 585-91.
Herrmann, B. (1997) ‘Prospects in prehistoric anthropology?’ Anthropologischer Anzeiger 55(2): 97-100.
Hummel, S., and Herrmann, B. (1991) ‘Y-chromosome-specific DNA amplified inancient human bones’, Naturwissenschaften 78: 266-7.
— and — (1996) ‘aDNA typing for reconstruction of kinship’, Homo 47(1-3): 215-22.
— and — (1997) ‘Verwandtschaftsfeststellung durch aDNA-analyse’, Anthropologischer Anzeiger 55(2): 217-23.
Ivanov, P. et al. (1996) ‘Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II, Nature Genetics 12: 417-20.
Jeffreys, A. J., Wilson, V. and Thein, S. L. (1985) ‘Individual-specific “fingerprints” of human DNA’, Nature 316: 76-9.
Jeffreys, A. J. et al. (1992) ‘Identification of the skeletal remains of Josef Mengeleby DNA analysis’, Forensic Science International 56(1): 65-76.
Lassen, C. S., Hummel, S. and Herrmann, B. (1996) ‘PCR-based sex identification of ancient human bones by amplification of X- and Y-chromosomal sequences: a comparison’, Ancient Biomolecules 1(1): 25-33.
Lawlor, D. A. et al. (1991) ‘Ancient HLA genes from 7,500-year-old archaeological remains’, Nature 349: 785-7.
Lingxia, Z. et al. (1996) ‘Ancient DNA extraction from Neolithic human remains and PCR-based amplification of the X-Y-homologous amelogenin gene’, ActaAntbropologica Sinica 15: 206-9.
Macko, S. A. et al. (1999) ‘Documenting the diet in ancient human populations through stable isotope analysis of hair’, Philosophical Transactions of the Royal Society of London, Series B, 354: 65-76.
Murdock, G. P. (1949) Social Structure, New York: Macmillan.
Oota, H. et al. (1995) ‘A genetic study of 2,000-year-old human remains from Japan using mitochondrial DNA sequences’, American Journal of Physical Anthropology 98(2): 133-45.
Oota, H. et al. (1999) ‘Molecular genetic analysis of remains of a 2,000-year-old human population in China and its relevance for the origin of the modern Japanese population’, American Journal of Human Genetics 64: 250-8.
Primorac, D. et al. (1996) ‘Identification of war victims from mass graves in Croatia, Bosnia, and Herzegovina by use of standard forensic methods and DNA typing’, Journal of Forensic Science 41(5): 891-4.
Stone, A. C. and Stoneking, M. (1998) ‘mtDNA analysis of a prehistoric Oneota population: implications for the peopling of the New World’, American Journal of Human Genetics 62: 1153-70.
— and — (1999) ‘Analysis of ancient DNA from a prehistoric Amerindian cemetery’, Philosophical Transactions of the Royal Society of London, Series B, 354: 153-9.
Thurnwald, R. C. (1932) Die Menschliche Gesellschaft in ihren ethnisoziologischen Grundlagen II, Berlin, pp. 193-4.
10 enemies within
Arriaza, B. T. et al. (1995) ‘Pre-Columbian tuberculosis in northern Chile: molecular and skeletal evidence’, American Journal of Physical Anthropology 98(1): 37-45.
Baron, H., Hummel, S. an
d Herrmann, B. (1996) ‘Mycobacterium Tuberculosis complex DNA in ancient human bones’, Journal of Archaeological Science 23: 667-71.
Cano, R. J. and Borucki, M. K. (1995) ‘Revival and identification of bacterial spores in 25-to 40-million-year-old Dominican amber’, Science 268: 1060–64
Dawes, J. D. and Magilton, J. R. (1980) The Cemetery of St Helen-on-the-Walls, Aldwark, London: Council for British Archaeology.
Donoghue, H. et al. (1998) ‘Mycobacterium tuberculosis complex DNA in calcified pleura from remains 1,400 years old’, Letters in Applied Microbiology 27(5): 265-9.
Dormandy, T. (1999) The White Death: A History of Tuberculosis, London: Hambledon Press.
Drancourt, M. et al. (1998) ‘Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia’, Proceedings of the National Academy of Science USA 95: 12637-40.
Faerman, M. et al. (1997) ‘Prevalence of human tuberculosis in a medieval population of Lithuania studied by ancient DNA analysis’, Ancient Biomolecules 1 (3): 205-14.
Fricker, E. J., Spigelman, M. and Fricker, C. R. (1997) ‘The detection of Escherichia coli DNA in the ancient remains of Lindow man using the polymerase chainreaction’, Letters in Applied Microbiology 24 (5): 351-4.
Gernaey, A. M. et al. (1998) ‘Detecting ancient tuberculosis’, Internet Archaeology 5.
Guhl, F. et al. (1999) ‘Isolation of Trypanosoma cruzi DNA in 4,000-year-old mummified human tissue from northern Chile’, American Journal of Physical Anthropology 108 (4): 401-7.
Handt, O. et al. (1994) ‘Molecular genetic analyses of the Tyrolean ice man’, Science 264: 1775-8.
Nerlich, A. G. et al. (1997) ‘Molecular evidence for tuberculosis in an ancient Egyptian mummy’, The Lancet 350 (9088): 1404.
Priest, F. G., Beckenbach, A. T. and Cano, R. J. (1995) ‘Age of bacteria from amber’, Science 270: 2015-17.
Rafi, A. et al. (1994) ‘Mycobacterium leprae DNA from ancient bone detected by PCR’, The Lancet 343 (8909): 1360-1.
Rhodes, A. N. et al. (1998) ‘Identification of bacterial isolates obtained from intestinal contents associated with 12,000-year-old mastodon remains’, Applied Environmental Microbiology 64 (2): 651-8.