Book Read Free

Rationality- From AI to Zombies

Page 104

by Eliezer Yudkowsky


  I would nominate, as the basic error not to repeat next time, that the early scientists forgot that they themselves were made out of particles.

  I mean, I’m sure that most of them knew it in theory.

  And yet they didn’t notice that putting a sensor to detect a passing electron, or even knowing about the electron’s history, was an example of “particles in different places.” So they didn’t notice that a quantum theory of distinct configurations already explained the experimental result, without any need to invoke consciousness.

  In the ancestral environment, humans were often faced with the adaptively relevant task of predicting other humans. For which purpose you thought of your fellow humans as having thoughts, knowing things and feeling things, rather than thinking of them as being made up of particles. In fact, many hunter-gatherer tribes may not even have known that particles existed. It’s much more intuitive—it feels simpler—to think about someone “knowing” something, than to think about their brain’s particles occupying a different state. It’s easier to phrase your explanations in terms of what people know; it feels more natural; it leaps more readily to mind.

  Just as, once upon a time, it was easier to imagine Thor throwing lightning bolts, than to imagine Maxwell’s Equations—even though Maxwell’s Equations can be described by a computer program vastly smaller than the program for an intelligent agent like Thor.

  So the ancient physicists found it natural to think, “I know where the photon was . . . what difference could that make?” Not, “My brain’s particles’ current state correlates to the photon’s history . . . what difference could that make?”

  And, similarly, because it felt easy and intuitive to model reality in terms of people knowing things, and the decomposition of knowing into brain states did not leap so readily to mind, it seemed like a simple theory to say that a configuration could have amplitude only “if you didn’t know better.”

  To turn the dualistic quantum hypothesis into a formal theory—one that could be written out as a computer program, without human scientists deciding when an “observation” occurred—you would have to specify what it meant for an “observer” to “know” something, in terms your computer program could compute.

  So is your theory of fundamental physics going to examine all the particles in a human brain, and decide when those particles “know” something, in order to compute the motions of particles? But then how do you compute the motion of the particles in the brain itself? Wouldn’t there be a potential infinite recursion?

  But so long as the terms of the theory were being processed by human scientists, they just knew when an “observation” had occurred. You said an “observation” occurred whenever it had to occur in order for the experimental predictions to come out right—a subtle form of constant tweaking.

  (Remember, the basics of quantum theory were formulated before Alan Turing said anything about Turing machines, and way before the concept of computation was popularly known. The distinction between an effective formal theory, and one that required human interpretation, was not as clear then as now. Easy to pinpoint the problems in hindsight; you shouldn’t learn the lesson that problems are usually this obvious in foresight.)

  Looking back, it may seem like one meta-lesson to learn from history, is that philosophy really matters in science—it’s not just some adjunct of a separate academic field.

  After all, the early quantum scientists were doing all the right experiments. It was their interpretation that was off. And the problems of interpretation were not the result of their getting the statistics wrong.

  Looking back, it seems like the errors they made were errors in the kind of thinking that we would describe as, well, “philosophical.”

  When we look back and ask, “How could the early quantum scientists have done better, even in principle?” it seems that the insights they needed were philosophical ones.

  And yet it wasn’t professional philosophers who swooped in and solved the problem and cleared up the mystery and made everything normal again. It was, well, physicists.

  Arguably, Leibniz was at least as foresightful about quantum physics, as Democritus was once thought to have been foresightful about atoms. But that is hindsight. It’s the result of looking at the solution, and thinking back, and saying, “Hey, Leibniz said something like that.”

  Even where one philosopher gets it right in advance, it’s usually science that ends up telling us which philosopher is right—not the prior consensus of the philosophical community.

  I think this has something fundamental to say about the nature of philosophy, and the interface between philosophy and science.

  It was once said that every science begins as philosophy, but then grows up and leaves the philosophical womb, so that at any given time, “Philosophy” is what we haven’t turned into science yet.

  I suggest that when we look at the history of quantum physics and say, “The insights they needed were philosophical insights,” what we are really seeing is that the insight they needed was of a form that is not yet taught in standardized academic classes, and not yet reduced to calculation.

  Once upon a time, the notion of the scientific method—updating beliefs based on experimental evidence—was a philosophical notion. But it was not championed by professional philosophers. It was the real-world power of science that showed that scientific epistemology was good epistemology, not a prior consensus of philosophers.

  Today, this philosophy of belief-updating is beginning to be reduced to calculation—statistics, Bayesian probability theory.

  But back in Galileo’s era, it was solely vague verbal arguments that said you should try to produce numerical predictions of experimental results, rather than consulting the Bible or Aristotle.

  At the frontier of science, and especially at the frontier of scientific chaos and scientific confusion, you find problems of thinking that are not taught in academic courses, and that have not been reduced to calculation. And this will seem like a domain of philosophy; it will seem that you must do philosophical thinking in order to sort out the confusion. But when history looks back, I’m afraid, it is usually not a professional philosopher who wins all the marbles—because it takes intimate involvement with the scientific domain in order to do the philosophical thinking. Even if, afterward, it all seems knowable a priori; and even if, afterward, some philosopher out there actually got it a priori; even so, it takes intimate involvement to see it in practice, and experimental results to tell the world which philosopher won.

  I suggest that, like ethics, philosophy really is important, but it is only practiced effectively from within a science. Trying to do the philosophy of a frontier science, as a separate academic profession, is as much a mistake as trying to have separate ethicists. You end up with ethicists who speak mainly to other ethicists, and philosophers who speak mainly to other philosophers.

  This is not to say that there is no place for professional philosophers in the world. Some problems are so chaotic that there is no established place for them at all in the halls of science. But those “professional philosophers” would be very, very wise to learn every scrap of relevant-seeming science that they can possibly get their hands on. They should not be surprised at the prospect that experiment, and not debate, will finally settle the argument. They should not flinch from running their own experiments, if they can possibly think of any.

  That, I think, is the lesson of history.

  *

  241

  Thou Art Physics

  Three months ago—jeebers, has it really been that long?—I posed the following homework assignment: Do a stack trace of the human cognitive algorithms that produce debates about “free will.” Note that this task is strongly distinguished from arguing that free will does or does not exist.

  Now, as expected, people are asking, “If the future is determined, how can our choices control it?” The wise reader can guess that it all adds up to normality; but this leaves the question of how.r />
  People hear: “The universe runs like clockwork; physics is deterministic; the future is fixed.” And their minds form a causal network that looks like this:

  Here we see the causes “Me” and “Physics,” competing to determine the state of the “Future” effect. If the “Future” is fully determined by “Physics,” then obviously there is no room for it to be affected by “Me.”

  This causal network is not an explicit philosophical belief. It’s implicit—a background representation of the brain, controlling which philosophical arguments seem “reasonable.” It just seems like the way things are.

  Every now and then, another neuroscience press release appears, claiming that, because researchers used an fMRI to spot the brain doing something-or-other during a decision process, it’s not you who chooses, it’s your brain.

  Likewise that old chestnut, “Reductionism undermines rationality itself. Because then, every time you said something, it wouldn’t be the result of reasoning about the evidence—it would be merely quarks bopping around.”

  Of course the actual diagram should be:

  Or better yet:

  Why is this not obvious? Because there are many levels of organization that separate our models of our thoughts—our emotions, our beliefs, our agonizing indecisions, and our final choices—from our models of electrons and quarks.

  We can intuitively visualize that a hand is made of fingers (and thumb and palm). To ask whether it’s really our hand that picks something up, or merely our fingers, thumb, and palm, is transparently a wrong question.

  But the gap between physics and cognition cannot be crossed by direct visualization. No one can visualize atoms making up a person, the way they can see fingers making up a hand.

  And so it requires constant vigilance to maintain your perception of yourself as an entity within physics.

  This vigilance is one of the great keys to philosophy, like the Mind Projection Fallacy. You will recall that it is this point which I nominated as having tripped up the quantum physicists who failed to imagine macroscopic decoherence; they did not think to apply the laws to themselves.

  Beliefs, desires, emotions, morals, goals, imaginations, anticipations, sensory perceptions, fleeting wishes, ideals, temptations . . . You might call this the “surface layer” of the mind, the parts-of-self that people can see even without science. If I say, “It is not you who determines the future, it is your desires, plans, and actions that determine the future,” you can readily see the part-whole relations. It is immediately visible, like fingers making up a hand. There are other part-whole relations all the way down to physics, but they are not immediately visible.

  “Compatibilism” is the philosophical position that “free will” can be intuitively and satisfyingly defined in such a way as to be compatible with deterministic physics. “Incompatibilism” is the position that free will and determinism are incompatible.

  My position might perhaps be called “Requiredism.” When agency, choice, control, and moral responsibility are cashed out in a sensible way, they require determinism—at least some patches of determinism within the universe. If you choose, and plan, and act, and bring some future into being, in accordance with your desire, then all this requires a lawful sort of reality; you cannot do it amid utter chaos. There must be order over at least those parts of reality that are being controlled by you. You are within physics, and so you/physics have determined the future. If it were not determined by physics, it could not be determined by you.

  Or perhaps I should say, “If the future were not determined by reality, it could not be determined by you,” or “If the future were not determined by something, it could not be determined by you.” You don’t need neuroscience or physics to push naive definitions of free will into incoherence. If the mind were not embodied in the brain, it would be embodied in something else; there would be some real thing that was a mind. If the future were not determined by physics, it would be determined by something, some law, some order, some grand reality that included you within it.

  But if the laws of physics control us, then how can we be said to control ourselves?

  Turn it around: If the laws of physics did not control us, how could we possibly control ourselves?

  How could thoughts judge other thoughts, how could emotions conflict with each other, how could one course of action appear best, how could we pass from uncertainty to certainty about our own plans, in the midst of utter chaos?

  If we were not in reality, where could we be?

  The future is determined by physics. What kind of physics? The kind of physics that includes the actions of human beings.

  People’s choices are determined by physics. What kind of physics? The kind of physics that includes weighing decisions, considering possible outcomes, judging them, being tempted, following morals, rationalizing transgressions, trying to do better . . .

  There is no point where a quark swoops in from Pluto and overrides all this.

  The thoughts of your decision process are all real, they are all something. But a thought is too big and complicated to be an atom. So thoughts are made of smaller things, and our name for the stuff that stuff is made of is “physics.”

  Physics underlies our decisions and includes our decisions. It does not explain them away.

  Remember, physics adds up to normality; it’s your cognitive algorithms that generate confusion.

  *

  242

  Many Worlds, One Best Guess

  If you look at many microscopic physical phenomena—a photon, an electron, a hydrogen atom, a laser—and a million other known experimental setups—it is possible to come up with simple laws that seem to govern all small things (so long as you don’t ask about gravity). These laws govern the evolution of a highly abstract and mathematical object that I’ve been calling the “amplitude distribution,” but which is more widely referred to as the “wavefunction.”

  Now there are gruesome questions about the proper generalization that covers all these tiny cases. Call an object “grue” if it appears green before January 1, 2020 and appears blue thereafter. If all emeralds examined so far have appeared green, is the proper generalization, “Emeralds are green” or “Emeralds are grue”?

  The answer is that the proper generalization is “Emeralds are green.” I’m not going to go into the arguments at the moment. It is not the subject of this essay, and the obvious answer in this case happens to be correct. The true Way is not stupid: however clever you may be with your logic, it should finally arrive at the right answer rather than a wrong one.

  In a similar sense, the simplest generalizations that would cover observed microscopic phenomena alone take the form of “All electrons have spin 1/2” and not “All electrons have spin 1/2 before January 1, 2020” or “All electrons have spin 1/2 unless they are part of an entangled system that weighs more than 1 gram.”

  When we turn our attention to macroscopic phenomena, our sight is obscured. We cannot experiment on the wavefunction of a human in the way that we can experiment on the wavefunction of a hydrogen atom. In no case can you actually read off the wavefunction with a little quantum scanner. But in the case of, say, a human, the size of the entire organism defeats our ability to perform precise calculations or precise experiments—we cannot confirm that the quantum equations are being obeyed in precise detail.

  We know that phenomena commonly thought of as “quantum” do not just disappear when many microscopic objects are aggregated. Lasers put out a flood of coherent photons, rather than, say, doing something completely different. Atoms have the chemical characteristics that quantum theory says they should, enabling them to aggregate into the stable molecules making up a human.

  So in one sense, we have a great deal of evidence that quantum laws are aggregating to the macroscopic level without too much difference. Bulk chemistry still works.

  But we cannot directly verify that the particles making up a human have an aggregate wavefunction that behaves exactly
the way the simplest quantum laws say. Oh, we know that molecules and atoms don’t disintegrate, we know that macroscopic mirrors still reflect from the middle. We can get many high-level predictions from the assumption that the microscopic and the macroscopic are governed by the same laws, and every prediction tested has come true.

  But if someone were to claim that the macroscopic quantum picture differs from the microscopic one in some as-yet-untestable detail—something that only shows up at the unmeasurable 20th decimal place of microscopic interactions, but aggregates into something bigger for macroscopic interactions—well, we can’t prove they’re wrong. It is Occam’s Razor that says, “There are zillions of new fundamental laws you could postulate in the 20th decimal place; why are you even thinking about this one?”

  If we calculate using the simplest laws which govern all known cases, we find that humans end up in states of quantum superposition, just like photons in a superposition of reflecting from and passing through a half-silvered mirror. In the Schrödinger’s Cat setup, an unstable atom goes into a superposition of disintegrating, and not-disintegrating. A sensor, tuned to the atom, goes into a superposition of triggering and not-triggering. (Actually, the superposition is now a joint state of [atom-disintegrated × sensor-triggered] + [atom-stable × sensor-not-triggered].) A charge of explosives, hooked up to the sensor, goes into a superposition of exploding and not exploding; a cat in the box goes into a superposition of being dead and alive; and a human, looking inside the box, goes into a superposition of throwing up and being calm. The same law at all levels.

  Human beings who interact with superposed systems will themselves evolve into superpositions. But the brain that sees the exploded cat, and the brain that sees the living cat, will have many neurons firing differently, and hence many many particles in different positions. They are very distant in the configuration space, and will communicate to an exponentially infinitesimal degree. Not the 30th decimal place, but the 1030th decimal place. No particular mind, no particular cognitive causal process, sees a blurry superposition of cats.

 

‹ Prev