Bayesian Statistics (4th ed)
Page 34
Chatterjee, S. J., Statistical Thought: A Perspective and History, Oxford: Oxford University Press (2003).
Chen, M.-H., and Shao, Q.-M., Monte Carlo estimation of Bayesian credible intervals and HPD intervals, Journal of Computational and Graphical Statistics, 8 (1998), 69–92.
Chib, S., and Greenberg, E., Bayes inference for regression models with ARMA errors, Journal of Econometrics, 64 (1994), 183–206.
Chib, S., and Greenberg, E., Understanding the Metropolis-Hastings Algorithm, American Statistician, 49 (1995), 327–335.
Cochran, W. G., and Cox, G. M., Experimental Designs (2nd edn), New York: John Wiley & Sons (1957) [1st edn (1950)].
Congdon, P., Bayesian Statistical Modelling, New York: John Wiley & Sons (2002).
Congdon, P., Bayesian Models for Categorical Data, New York: John Wiley & Sons (2005).
Congdon, P., Applied Bayesian Modelling (2nd edn), New York: John Wiley & Sons (2006) [1st edn (2003)].
Congdon, P., Applied Bayesian Hierarchical Modelling, New York: John Wiley & Sons (2010).
Corduneanu, A., and Bishop, C. M., Variational Bayesian model selection for mixture distributions, in Jaakola, T., and Richardson, T. (eds), Artifical Intelligence and Statistics, San Mateo, CA: Morgan Kaufmann (2001), pp. 27–34.
Cornish, E. A., The multivariate t-distribution associated with a set of normal sample deviates, Austral. J. Phys., 7 (1954), 531–542.
Cornish, E. A., The sampling distribution of statistics derived from the multivariate t-distribution, Austral. J. Phys., 8 (1955), 193–199.
Cornish, E. A., Published Papers of E. A. Cornish, Adelaide: E. A. Cornish Memorial Appeal, Adelaide (1974).
Cowles, M. K., and Carlin, B. P., Markov chain Monte Carlo convergence diagnostics: a comparative review, J. Amer. Statist. Assoc., 91 (1996), 883–904.
Dalal, S. R., Non-parametric Bayes decision theory (with discussion), in Bernardo et al. (1980).
Dale, A., A History of Inverse Probability from Thomas Bayes to Karl Pearson, Berlin: Springer-Verlag (1999) [1st edn (1991)].
Dale, A., Most Honourable Remembrance: The Life and Work of Thomas Bayes, Berlin: Sprinter-Verlag (2003).
Dalgaard, P., Introductory Statistics with R (2nd edn), Berlin: Springer-Verlag (2008) [1st edn (2002)].
Dalziel, C. F., Lagen, J. B., and Thurston, J. L., Electric shocks, Trans. IEEE, 60 (1941), 1073–1079.
David, F. N. Tables of the Correlation Coefficient, Cambridge: Cambridge University Press for Biometrika (1954).
Davis, P. J., and Rabinowitz, P., Methods of Numerical Integration (2nd edn), Orlando, FL: Academic Press (1984) [1st edn (1975)].
Dawid, A. P., The island problem: coherent use of identification evidence, in Freeman and Smith (1994).
Deely, J., and Lindley, D. V., Bayes empirical Bayes, J. Amer. Statist. Assoc., 76 (1981), 833–841.
DeGroot, M. H., Optimal Statistical Decisions, New York: McGraw-Hill (1970).
DeGroot, M. H., Fienberg, S. E., and Kadane, J. B. (eds), Statistics and the Law, New York: John Wiley & Sons (1986).
Dempster, A. P., Laird, N. M., and Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm (with Discussion), J. Roy. Statist. Soc. Ser. B, 39 (1977), 1–38.
Dey, D. K., Ghosh, S. K., and Mallick, B. K., Generalized Linear Models: A Bayesian Perspective, Basel: Marcel Dekker (2000).
Di Raimondo, F., In vitro and in vivo antagonism between vitamins and antibiotics, Int. Rev. Vitamin Res., 23 (1951), 1–12.
Diaconis, P., and Ylvisaker, D., Conjugate priors for exponential families, Ann. Statist., 7 (1979), 269–281.
Diaconis, P., and Ylvisaker, D., Quantifying prior opinion, in Bernardo et al. (1985).
Dobson, A. J., and Barnett, A., An Introduction to Generalized Linear Models (3rd edn), London: Chapman and Hall 2008 [1st edn (1990) and 2nd edn (2002) by Dobson alone].
Dunnett, C. W., and Sobel, M., A bivariate generalization of Student's t distribution with tables for special cases, Biometrika, 41 (1954), 153–176.
Edwards, A. W. F., The measure of association in a 2 × 2 table, J. Roy. Statist. Soc. Ser. A, 126 (1963), 109–113.
Edwards, A. W. F., Likelihood, Cambridge: Cambridge University Press (1992) [1st edn (1972)].
Edwards, A. W. F., Bayes, Rev. Thomas, in Dictionary of National Biography: Missing Persons, Oxford: Oxford University Press (1993).
Edwards, A. W. F., Bayes, Rev. Thomas, in Oxford Dictionary of National Biography, Oxford: Oxford University Press (2004).
Edwards, J., A Treatise on the Integral Calculus, London: Macmillan (1921) [reprinted New York: Chelsea (1955)].
Edwards, W., Lindman, H., and Savage, L. J., Bayesian statistical inference for psychological research, Psychological Review, 70 (1963), 193–242 [reprinted in Luce et al. (1965), Kadane (1984), Savage (1981) and Polson and Tiao (1995, Volume I)].
Efron, B., and Morris, C., Data analysis using Stein's estimator and its generalisations, J. Amer. Statist. Assoc., 70 (1975), 311–319.
Efron, B., and Morris, C., Stein's paradox in statistics, Scientific American, 236 (1977 May), 119–127, 148.
Eisenhart, C., Hastay, M. W., and Wallis, W. A. (eds), (Selected) Techniques of Statistical Analysis by the Statistical Research Group of Columbia University, New York: McGraw-Hill (1947).
Evans, G., Practical Numerical Integration, New York: John Wiley & Sons (1993).
Evans, M., Hastings, N., and Peacock, B., Statistical Distributions, New York: John Wiley & Sons (1993) [1st edn by Hastings and Peacock only (1974)].
Evans, M., and Swartz, T., Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems (with Discussion), Statist. Sci., 10 (1995), 254–272 and 11 (1996), 54–64.
Evans, M., and Swartz, T., Approximating Integrals via Monte Carlo and Deterministic Methods, Oxford: Oxford University Press (2000).
Fan, Y., and Sisson, S. A., Reversible jump MCMC, Chapter 3 in Brooks et al. (2011).
Fang, K.-T., Kotz, S., and Wang, K. W., Symmetric Multivariate and Related Distributions, London: Chapman and Hall (1989).
Fearnhead, P., and Prangle, D., Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation, J. Roy. Statist. Soc. Ser. B, 74 (2012), 1–28.
Feller, W., An Introduction to Probability Theory and its Applications, New York: John Wiley & Sons (Vol. 1 1950, 1957, 1968; Vol. 2 1966, 1971).
Ferguson, T. S., Mathematical Statistics: A Decision Theoretic Approach, New York: Academic Press (1967).
Ferguson, T. S., A Bayesian analysis of some nonparametric problems, Ann. Statist., 1 (1973), 209–230.
Fienberg, S. E. (ed.), The Evolving Role of Statistical Assessments as Evidence in the Court, New York: Springer-Verlag (1989).
de Finetti, B., La prévision: ses lois logiques, ses sources subjectives, Ann. Inst. H. Poincaré, 7 (1937), 86–133 [translated by H. E. Kyberg, Jr, as de Finetti (1964)].
de Finetti, B., Foresight: its logical laws, its subjective sources, in Kyburg and Smokler (1964) [reprinted in Polson and Tiao (1995, Volume I) and in Kotz and Johnson (1992–1997, Volume I)].
de Finetti, B., Probability, Induction and Statistics: The Art of Guessing, New York: John Wiley & Sons (1972).
de Finetti, B., Theory of Probability: A critical introductory treatment (2 vols.), New York: John Wiley & Sons (1974–1975).
Fisher, R. A., Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population, Biometrika, 10 (1915), 507–521.
Fisher, R. A., On the `probable error’ of a coefficient of correlation deduced from a small sample, Metron, 1 (1921), 3–32.
Fisher, R. A., On the mathematical foundations of theoretical statistics, Phil. Trans. Roy. Soc. London Ser. A, 222 (1922), 309–368 [reprinted in Kotz and Johnson (1992–1997, Volume I)].
Fisher, R. A., On a distribution yielding the error function of several well known statistics, Proc. In
ternat. Congress of Math., Toronto: Toronto University Press (1924), vol. 2, pp. 805–813.
Fisher, R. A., Theory of statistical information, Proc. Cambridge Philos. Soc., 22 (1925a), 700–725.
Fisher, R. A., Statistical Methods for Research Workers, Edinburgh: Oliver & Boyd (1925b) (many subsequent editions).
Fisher, R. A., The fiducial argument in statistical inference, Ann. Eugenics, 6 (1935), 391–398.
Fisher, R. A., Has Mendel's work been rediscovered?, Ann. Sci., 1 (1936), 115–137.
Fisher, R. A., On a point raised by M. S. Bartlett in fiducial probability, Ann. Eugenics, 7 (1937), 370–375.
Fisher, R. A., The comparison of samples with possibly unequal variances, Ann. Eugenics, 9 (1939), 174–180.
Fisher, R. A., The analysis of variance with various binomial transformations, Biometrics 10 (1954), 130–139.
Fisher, R. A., Statistical Methods and Scientific Inference (2nd edn), Edinburgh: Oliver & Boyd (1959) [1st edn (1956)].
Fisher, R. A., Collected Papers of R.A. Fisher (5 vols), edited by J. H. Bennett, Adelaide: University of Adelaide Press (1971–1974).
Florens, J. P., Mouchart, M., Raoult, J. P., Simar, L., and Smith, A. F. M., Specifying Statistical Models from Parametric to Non-parametric Using Bayesian or Non-Bayesian Approaches (Lecture Notes in Statistics No. 16), Berlin: Springer-Verlag (1983).
Foreman, L. A., Smith, A. F. M., and Evett, I.W., Bayesian analysis of DNA profiling data in forensic identification applications, J. Roy. Statist. Soc. Ser. A, 160 (1997), 429–469.
Fox, J., An R and S-Plus Companion to Applied Regression, Thousand Oaks, CA: Sage (2002).
Freeman, P. R., and Smith, A. F. M., Aspects of Uncertainty: A Tribute to D. V. Lindley, New York: John Wiley & Sons (1994).
French, S., and Smith, J. Q., The Practice of Bayesian Statistics, London: Arnold (1997).
Gamerman, D., and Lopes, H. F., Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference (2nd edn), Boca Racon, FL: Chapman and Hall/CRC (2006) [1st edn by Gamerman alone (1997)].
Gastwirth, J. L., Statistical Reasoning in Law and Public Policy (2 vols), Boston, MA: Academic Press (1988).
Gatsonis, C., Hodges, J. S., Kass, R. E., and Singpurwalla, N. D. (eds), Case Studies in Bayesian Statistics (Lecture Notes in Statistics, No. 83), Berlin: Springer-Verlag (1993).
Gatsonis, C., Hodges, J. S., Kass, R. E., and Singpurwalla, N. D. (eds), Case Studies in Bayesian Statistics, Volume II (Lecture Notes in Statistics, No. 105), Berlin: Springer-Verlag (1995).
Gatsonis, C., Hodges, J. S., Kass, R. E., McCulloch, R. E., Rossi, P., and Singpurwalla, N. D. (eds), Case Studies in Bayesian Statistics, Volume III (Lecture Notes in Statistics, No. 121), Berlin: Springer-Verlag (1997).
Gatsonis, C., Kass, R. E., Carlin, B., Carriquiry, A., Gelman, A., Verdinelli, I., and West, M. (eds), Case Studies in Bayesian Statistics, Volume IV (Lecture Notes in Statistics, No. 140), Berlin: Springer-Verlag (1999).
Gatsonis, C., Kass, R. E., Carlin, B., Carriquiry, A., Gelman, A., Verdinelli, I., and West, M. (eds), Case Studies in Bayesian Statistics, Volume V (Lecture Notes in Statistics, No. 162), Berlin: Springer-Verlag (2002a).
Gatsonis, C., Kass, R. E., Carriquiry, A., Gelman, A., Higdon, D., Pauler, D. K., and Verdinelli, I. (eds), Case Studies in Bayesian Statistics, Volume VI (Lecture Notes in Statistics, No. 167), Berlin: Springer-Verlag (2002b).
Gaver D., and O'Muircheartaigh I., Robust empirical Bayes analysis of event rates, Technometrics, 29 (1) (1987), 1–15.
Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M., Illustration of Bayesian inference in normal data models using Gibbs sampling, J. Amer. Statist. Soc., 85 (1990), 972–985.
Gelfand, A. E., and Smith, A. F. M., Sampling-based approaches to calculating marginal densities, J. Amer. Statist. Assoc., 85 (1990), 398–409 [reprinted in Polson and Tiao (1995, Volume II) and in Kotz and Johnson (1992–1997, Volume III)].
Gelfand, I. M., and Fomin, S. V., Calculus of Variations, London: Prentice-Hall (1963).
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B., Bayesian Data Analysis (2nd edn), London: Chapman and Hall (2004) [1st edn (1995)].
Gelman, A., and Rubin, D. B., Inference from iterated simulation using multiple sequences (with discussion), Statistical Science, 7 (1992), 457–511.
Geman, S., and Geman, D., Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images, Trans. Pattern Analysis and Machine Intelligence, 6 (1984), 721–742 [reprinted in Polson and Tiao (1995, Volume II) and in Kotz and Johnson (1992–1997, Volume III)].
Ghosh, J. K., and R.V. Ramamoorthi, R. V., Bayesian Nonparametrics, New York: Springer-Verlag (2003).
Gilks, W. R., Full conditional distributions, Chapter 5, in Gilks et al., Markov Chain Monte Carlo in Practice, London: Chapman and Hall (1996).
Gilks, W. R., Clayton, D. G., Spiegelhalter, D. J., Best, N. G., McNeil, A. J., Sharples, L. D., and Kirby, A. J., Modelling complexity: applications of Gibbs sampling in medicine, J. Roy. Statist. Soc. Ser. B, 55 (1993), 39–52.
Gilks, W. R., Richardson, S., and Spiegelhalter, D. J., Markov Chain Monte Carlo in Practice, London: Chapman and Hall (1996).
Gilks, W. R., and Wild, P., Adaptive rejection sampling for Gibbs sampling, Applied Statistics, 41 (1992), 337–348.
Gill, J., Bayesian Methods: A Social and Behavioural Sciences Approach (2nd edn), Boca Raton, FL: Chapman and Hall/CRC (2007) [1st edn (2002)].
Godambe, V. P., and Sprott, D. A. (eds), Foundations of Statistical Inference: A Symposium, Toronto: Holt, Rinehart and Winston (1971).
Goldstein, M., and Wooff, D., Bayes Linear Statistics, Chichester: John Wiley & Sons (2007).
Good, I. J., Probability and the Weighing of Evidence, London: Griffin (1950).
Good, I. J., The Estimation of Probabilities: An Essay on Modern Bayesian Methods, Cambridge, MA: MIT Press (1965).
Good, I. J., Some history of the hierarchical Bayesian methodology, in Bernardo et al. (1980) [reprinted as Chapter 9 of Good (1983)].
Good, I. J., Good Thinking: The Foundations of Probability and its Applications, Minneapolis, MN: University of Minnesota Press (1983).
Green P. J., Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82 (4) (1995), 711–732.
Hald, A., A History of Probability and Statistics and their applications before 1750, New York: John Wiley & Sons (1986).
Hald, A., A History of Mathematical Statistics from 1750 to 1930, New York: John Wiley & Sons (1998).
Hald, A., A history of parametric statistical inference from Bernoulli to Fisher, 1713–1935, New York: Springer (2007).
Haldane, J. B. S., A note on inverse probability, Proc. Cambridge Philos. Soc., 28 (1931), 55–61.
Hardy, G. H., Littlewood, J. E., and Pólya, G., Inequalities, Cambridge: Cambridge University Press (1952) [1st edn (1934)].
Härdle, W., Smoothing Techniques with Implementation in S, New York: Springer (1991).
Harter, H. L., The method of least squares and some alternatives, Internat. Statist. Review, 42 (1974), 147–174, 235–264, 43 (1975), 1–44, 125–190, 269–278, and 44 (1976), 113–159.
Hartigan, J. A., Bayes Theory, Berlin: Springer-Verlag (1983).
Hastings, W. K., Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1970), 97–109 [reprinted in Kotz and Johnson (1992–1997, Volume III)].
Hill, B. M., On statistical paradoxes and non-conglomerability, in Bernardo et al. (1980).
Hill, B. M., De Finetti's theorem, induction and, or Bayesian nonparametric predictive inference, in Bernardo et al. (1988)
Hjort, N. L., Holmes, C., Müller, P., and Walker, S. G. (eds), Bayesian Nonparametrics, Cambridge: Cambridge University Press (2010).
Hoerl, A. E., and Kennard, R. W., Ridge regression: biased estimation for nonorthogonal problems, Techonometrics, 12 (1970), 55–67, and Ridge regression: applications to non-orthogonal pro
blems, ibid., 69–82.
Hoerl, A. E., and Kennard, R. W, Ridge regression. In S. Kotz, N. L. Johnson and C. B. Read (eds), Encyclopedia of Statistical Sciences, New York: John Wiley & Sons (1988).
Holland, G. D., The Reverend Thomas Bayes, F.R.S. (1702–1761), J. Roy. Statist. Soc. Ser. A, 125 (1962), 451–461.
Horn, R. A., and Johnson, C. A., Matrix Analysis, Cambridge: Cambridge University Press (1985).
Horn, R. A., and Johnson, C. A., Topics in Matrix Analysis, Cambridge: Cambridge University Press (1991).
Hosmer, D. W., and Lemeshow, S., Applied Logistic Regression (2nd edn), New York: John Wiley & Sons (2000) [1st edn (1989)].
Huzurbazar, V. S., Sufficient Statistics, New York: Marcel Dekker (1976).
Isaacs, G. L., Christ, D. E., Novick, M. R., and Jackson, P. H., Tables for Bayesian Statisticians, Ames, IO: Iowa University Press (1974).
Jackson, P. H., Formulae for generating highest density credibility regions, ACT Technical Report No. 20, Iowa City, IO: American College Testing Program (1974).
James, W., and Stein, C., Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, and Los Angeles, CA: University of California Press (1961), Volume I, pp. 311–319 [reprinted in Kotz and Johnson (1992–1997, Volume I)].
Jeffreys, H. S., Theory of Probability (3rd edn), Oxford: Oxford University Press (1961) [1st edn (1939), 2nd edn (1948)].
Jensen, F. V., An Introduction to Bayesian Networks, London: Taylor and Francis (1996).
Jensen, F. V., and Nielson, T. D., Bayesian Networks and Decision Graphs (2nd edn), New York: Springer (2010) [1st edn (2001)].
Johnson, N. L., Kemp, A.W., and Kotz, S., Univariate Discrete Distributions (3rd edn), New York: John Wiley & Sons (2005) [1st edn published as Discrete Distributions, New York: Houghton-Mifflin (1969); 2nd edn (1992)].
Johnson, N. L., Kotz, S., and Balakrishnan, N., Continuous Univariate Distributions (2 vols), New York: John Wiley & Sons (1994–1995) [1st edn published New York: Houghton-Mifflin (1970–1971)].
Kadane, J. B. (ed.), Robustness of Bayesian Analyses, Amsterdam: North-Holland (1984).
Kale, B. K., On the solution of the likelihood equation by iteration processes, Biometrika, 48 (1961), 452–456.