Book Read Free

The Dreams That Stuff is Made of

Page 10

by Stephen Hawking


  Tracing the analogy between the two kinds of mechanical states, we might now expect the possibility of an absorption of radiation, not only corresponding to the passing of the system between two different stationary states, but also corresponding to the passing between one of the stationary states and a state in which the electron is free; and as above, we might expect that the frequency of this radiation was determined by the equation E = hν, where E is the difference between the total energy of the system in the two states. As it will be seen, such an absorption of radiation is just what is observed in experiments on ionization by ultra-violet light and by Röntgen rays. Obviously, we get in this way the same expression for the kinetic energy of an electron ejected from an atom by photo-electric effect as that deduced by Einsteinbf, i.e. T = hν − W, where T is the kinetic energy of the electron ejected, and W the total amount of energy emitted during the original binding of the electron.

  The above considerations may further account for the result of some experiments of R.W. Woodbg on absorption of light by sodium vapour. In these experiments, an absorption corresponding to a very great number of lines in the principal series of the sodium spectrum is observed, and in addition a continuous absorption which begins at the head of the series and extends to the extreme ultra-violet. This is exactly what we should expect according to the analogy in question, and, as we shall see, a closer consideration of the above experiments allows us to trace the analogy still further. As mentioned on p. 9 the radii of the orbits of the electrons will for stationary states corresponding to high values for τ be very great compared with ordinary atomic dimensions. This circumstance was used as an explanation of the non-appearance in experiments with vacuum-tubes of lines corresponding to the higher numbers in the Balmer series of the hydrogen spectrum. This is also in conformity with experiments on the emission spectrum of sodium; in the principal series of the emission spectrum of this substance rather few lines are observed. Now in Wood’s experiments the pressure was not very low, and the states corresponding to high values for τ could therefore not appear; yet in the absorption spectrum about 50 lines were detected. In the experiments in question we consequently observe an absorption of radiation which is not accompanied by a complete transition between two different stationary states. According to the present theory we must assume that this absorption is followed by an emission of energy during which the systems pass back to tile original stationary state. If there are no collisions between the different systems this energy will be emitted as a radiation of the same frequency as that absorbed, and there will be no true absorption but only a scattering of the original radiation; a true absorption will not occur unless the energy in question is transformed by collisions into kinetic energy of free particles. In analogy we may now from the above experiments conclude that a bound electron—also in cases in which there is no ionization—will have an absorbing (scattering) influence on a homogeneous radiation, as soon as the frequency of the radiation is greater than W/h, where W is the total amount of energy emitted during the binding of the electron. This would be highly in favour of a theory of absorption as the one sketched above, as there can in such a case be no question of a coincidence of the frequency of the radiation and a characteristic frequency of vibration of the electron. It will further be seen that the assumption, that there will be an absorption (scattering) of any radiation corresponding to a transition between two different mechanical states, is in perfect analogy with the assumption generally used that a free electron will have an absorbing (scattering) influence on light of any frequency. Corresponding considerations will hold for the emission of radiation.

  In analogy to the assumption used in this paper that the emission of line-spectra is due to the re-formation of atoms after one or more of the lightly bound electrons are removed, we may assume that the homogeneous Röntgen radiation is emitted during the settling down of the systems after one of the firmly bound electrons escapes, e.g. by impact of cathode particlesbh. In the next part of this paper, dealing with the constitution of atoms, we shall consider the question more closely and try to show that a calculation based on this assumption is in quantitative agreement with the results of experiments: here we shall only mention briefly a problem with which we meet in such a calculation.

  Experiments on the phenomena of X-rays suggest that not only the emission and absorption of radiation cannot be treated by the help of the ordinary electrodynamics, but not even the result of a collision between two electrons of which the one is bound in an atom. This is perhaps most clearly shown by some very instructive calculations on the energy of β-particles emitted from radioactive substances recently published by Rutherfordbi. These calculations strongly suggest that an electron of great velocity in passing through an atom and colliding with the electrons bound will loose energy in distinct finite quanta. As is immediately seen, this is very different from what we might expect if the result of the collisions was governed by the usual mechanical laws. The failure of the classical mechanics in such a problem might also be expected beforehand from the absence of anything like equipartition of kinetic energy between free electrons and electrons bound in atoms. From the point of view of the “mechanical” states we see, however, that the following assumption—which is in accord with the above analogy—might be able to account for the result of Rutherford calculation and for the absence of equipartition of kinetic energy: two colliding electrons, bound or free, will, after the collision as well as before, be in mechanical states. Obviously, the introduction of such an assumption would not make any alteration necessary in the classical treatment of a collision between two free particles. But, considering a collision between a free and a bound electron, it would follow that the bound electron by the collision could not acquire a less amount of energy than the difference in energy corresponding to successive stationary states, and consequently that the free electron which collides with it could not lose a less amount.

  The preliminary and hypothetical character of the above considerations needs not to be emphasized. The intention, however, has been to show that the sketched generalization of the theory of the stationary states possibly may afford a simple basis of representing a number of experimental facts which cannot be explained by help of the ordinary electrodynamics, and that the assumptions used do not seen, to be inconsistent with experiments on phenomena for which a satisfactory explanation has been given by the classical dynamics and the wave theory of light.

  § 5. THE PERMANENT STATE OF AN ATOMIC SYSTEM

  We shall now return to the main object of this paper—the discussion of the “permanent” state of a system consisting of nuclei and bound electrons. For a system consisting of a nucleus and an electron rotating round it, this state is, according to the above, determined by the condition that the angular momentum of the electron round the nucleus is equal to h/2π.

  On the theory of this paper the only neutral atom which contains a single electron is the hydrogen atom. The permanent state of this atom should correspond to the values of a and ω calculated on p. 5. Unfortunately, however, we know very little of the behavior of hydrogen atoms on account of the small dissociation of hydrogen molecules at ordinary temperatures. In order to get a closer comparison with experiments, it is necessary to consider more complicated systems.

  Considering systems in which more electrons are bound by a positive nucleus, a configuration of the elections which presents itself as a permanent state is one in which the electrons are arranged in a ring round the nucleus. In the discussion of this problem on the basis of the ordinary electrodynamics, we meet—apart from the question of the energy radiation—with new difficulties due to the question of the stability of the ring. Disregarding for a moment this latter difficulty, we shall first consider the dimensions and frequency of the systems in relation to Planck’s theory of radiation.

  Let us consider a ring consisting of n electrons rotating round a nucleus of charge E, the electrons being arranged at equal angular intervals around the circu
mference of a circle of radius a.

  The total potential energy of the system consisting of the electrons and the nucleus is

  where

  For the radial force exerted on an electron by the nucleus and the other electrons we get.

  Denoting the kinetic energy of an electron by T and neglecting the electromagnetic forces due to the motion of the electrons (see Part II), we get, putting the centrifugal force on an electron equal to the radial force,

  or

  From this we get for the frequency of revolution

  The total amount of energy W necessary transferred to the system in order to remove the electrons to infinite distances apart from the nucleus and from each other is equal to the total kinetic energy of the electrons.

  We see that the only difference in the above formula and those holding for the motion of a single electron in a circular orbit round a nucleus is the exchange of E for E—esn. It is also immediately seen that corresponding to the motion of an electron in an elliptical orbit round a nucleus, there will be a motion of the n electrons in which each rotates in an elliptical orbit with the nucleus in the focus, and the n electrons at any moment are situated at equal angular intervals on a circle with the nucleus as the center. The major axis and frequency of the orbit of the single electrons will for this motion be given by the expressions (1) on p. 3 if we replace E by E—esn and W by W/n.

  Let us now suppose that the system of n electrons rotating in a ring round a nucleus is formed in a way analogous to the one assumed for a single electron rotating round a nucleus. It will thus be assumed that the electrons, before the binding by the nucleus, were at a great distance apart from the latter and possessed no sensible velocities, and also that during the binding a homogeneous radiation is emitted. As in the case of a single electron, we have here that the total amount of energy emitted during the formation of the system is equal to the final kinetic energy of the electrons. If we now suppose that during the formation of the system the electrons at any moment are situated at equal angular intervals on the circumference of a circle with the nucleus in the centre, from analogy with the considerations on p. 5 we are here led to assume the existence of a series of stationary configurations in which the kinetic energy per electron is equal to τh (ω/2), where τ is an entire number, h Planck’s constant, and ω the frequency of revolution. The configuration in which the greatest amount of energy is emitted is, as before, the one in which τ = 1. This configuration we shall assume to be the permanent state of the system if the electrons in this state are arranged in a single ring. As for the case of a single electron, we get that the angular momentum of each of the electrons is equal to h/2π. It may be remarked that instead of considering the single electrons we might have considered the ring as an entity. This would, however, lead to the same result, for in this case the frequency of revolution ω will be replaced by the frequency nω of the radiation from the whole ring calculated from the ordinary electrodynamics, and T by the total kinetic energy nT.

  There may be many other stationary states corresponding to other ways of forming the system. The assumption of the existence of such states seems necessary in order to account for the line-spectra of systems containing more than one electron (p. 11); it is also suggested by the theory of Nicholson mentioned on p. 6, to which we shall return in a moment. The consideration of the spectra, however, gives, as far as I can see, no indication of the existence of stationary states in which all the electrons are arranged in a ring and which correspond to greater values for the total energy emmitted than the one we above have assumed to be the permanent state.

  Further, there may be stationary configurations of a system of n electrons and a nucleus of charge E in which all the electrons are not arranged in a single ring. The question, however, of the existence of such stationary configurations is not essential for our determination of the permanent state, as long as we assume that the electrons in this state of the system are arranged in a single ring. Systems corresponding to more complicated figurations will be discussed on p. 24.

  Using the relation T = h(ω/2) we get, by help of the above expressions for T and ω, values for a and ω corresponding to the permanent state of the system which only differ from those given by the equations (3) on p. 5, by exchange of E for E—esn.

  The question of stability of a ring of electrons rotating round a positive charge is discussed in great detail by Sir J.J. Thomsonbj. An adaption of Thomson’s analysis for the case here considered of a ring rotating around a nucleus of negligibly small linear dimensions is given by Nicholsonbk. The investigation of the problem in question naturally divides in two parts: one concerning the stability for displacements of the electrons in the plane of the ring; one concerning displacements perpendicular to this plane. As Nicholson’s calculations show, the answer to the question of stability differs very much in the two cases in question. While the ring for the latter displacements in general is stable if the number of electrons is not great; the ring is in no case considered by Nicholson stable for displacements of the first kind.

  According, however, to the point of view taken in this paper, the question of stability for displacements of the electrons in the plane of the ring is most intimately connected with the question of the mechanism of the binding of the electrons, and like the latter cannot be treated on the basis of the ordinary dynamics. The hypothesis of which we shall make use in the following is that the stability of a ring of electrons rotating round a nucleus is secured through the above condition of the universal constancy of the angular momentum, together with the further condition that the configuration of the particles is the one by the formation of which the greatest amount of energy is emitted. As will be shown, this hypothesis is, concerning the question of stability for a displacement of the electrons perpendicular to the plane of the ring, equivalent to that used in ordinary mechanical calculations.

  Returning to the theory of Nicholson on the origin of lines observed in the spectrum of the solar corona, we shall now see that he difficulties mentioned on p. 7 may be only formal. In the first place, from the point of view considered above the objection as to the instability of the systems for displacements of the electrons in the plane of the ring may not be valid. Further, the objection as to the emission of the radiation in quanta will not have reference to the calculations in question, if we assume that in the coronal spectrum we are not dealing with a true emission but only with a scattering of radiation. This assumption seems probable if we consider the conditions in the celestial body in question; for on account of the enormous rarefaction of the matter there may be comparatively few collisions to disturb the stationary states and to cause a true emission of light corresponding to the transition between different stationary states: on the other hand there will in the solar corona be intense illumination of light of all frequencies which may excite the natural vibrations of the systems in the different stationary states. If the above assumption is correct, we immediately understand the entirely different from for the laws connecting the lines discussed by Nicholson and those connecting the ordinary line-spectra considered in this paper.

  Proceeding to consider systems of a more complicated constitution, we shall make use of the following theorem, which can be very simply proved:—“In every system consisting of electrons and positive nuclei, in which the nuclei are at rest and the electrons move in circular orbits with a velocity small compared with the velocity of light, the kinetic energy will be numerically equal to half the potential energy.”

  By help of this theorem we get—as in the previous cases of a single electron or of a ring rotating round a nucleus—that the total amount of energy emitted, by the formation of the systems from a configuration in which the distances apart of the particles are infinitely great and in which the particles have no velocities relative to each other, is equal to the kinetic energy of the electrons in the final configuration.

  In analogy with the case of a single ring we are here led to assume that corresponding to any conf
iguration of equilibrium a series of geometrically similar, stationary configurations of the system will exist in which the kinetic figurations of the systems will exist in which the kinetic energy of every electron is equal to the frequency of revolution multiplied by (τ/2)h where τ is an entire number and h Planck’s constant. In any such series of stationary configurations the one corresponding to the greatest amount of energy emitted will be the one in which τ for every electron is equal to 1. Considering that the ratio of kinetic energy to frequency for a particle rotating in a circular orbit is equal to π times the angular momentum round the centre of the orbit, we are therefore led to the following simple generalization of the hypotheses mentioned on pp. 15 and 22.

 

‹ Prev