Book Read Free

The Lives of Bees

Page 46

by Thomas D Seeley

Fig. 4.5. Photo by Alex Wild.

  Fig. 4.6. Photo by Ann B. Chilcott.

  Seeley.indb 342

  2/21/2019 8:08:05 AM

  Illustration Credits 343

  Fig. 4.7. Photo by Alex Wild.

  Fig. 5.1. Photos by Thomas D. Seeley.

  Fig. 5.2. Original drawing by Margaret C. Nelson, based on original data of

  Thomas D. Seeley and data in Seeley, T. D., and R. A. Morse, 1976, The

  nest of the honey bee ( Apis mellifera L), Insectes Sociaux 23: 495–512.

  Fig. 5.3. Original drawing by Margaret C. Nelson, based on data in Seeley,

  T. D., and R. A. Morse, 1976, The nest of the honey bee ( Apis mellifera

  L), Insectes Sociaux 23: 495–512.

  Fig. 5.4. Photo by Thomas D. Seeley.

  Fig. 5.5. Photo by Scott Camazine.

  Fig. 5.6. Photo by Thomas D. Seeley.

  Fig. 5.7. Photo by Thomas D. Seeley.

  Fig. 5.8. Photo by Alex Wild.

  Fig. 5.9. Photo by Armin Spürgin.

  Fig. 5.10. Original drawings by Margaret C. Nelson. Drawing on right is

  based on fig. 11 in Martin, H., and M. Lindauer, 1966, Sinnesphysiolo-

  gische Leistungen beim Wabenbau der Honigbiene, Zeitschrift für Vergleich-

  ende Physiologie 53: 372–404.

  Fig. 5.11. Original drawing by Margaret C. Nelson, based on data in Smith,

  M. L., M. M. Ostwald, and T. D. Seeley, 2016, Honey bee sociometry:

  Tracking honey bee colonies and their nest contents from colony

  founding until death, Insectes Sociaux 63: 553–563.

  Fig. 5.12. Original drawing by Margaret C. Nelson, based on data in Pratt,

  S. C., 1999, Optimal timing of comb construction by honeybee ( Apis

  mellifera) colonies: A dynamic programming model and experimental

  tests, Behavioral Ecology and Sociobiology 46: 30–42.

  Fig. 5.13. Top: photo by Thomas D. Seeley. Bottom: original drawing by

  Margaret C. Nelson, based on data in Seeley, T. D., and R. A. Morse,

  1976, The nest of the honey bee ( Apis mellifera L), Insectes Sociaux 23:

  495–512; and in Smith, M. L., M. M. Ostwald, and T. D. Seeley, 2016,

  Honey bee sociometry: Tracking honey bee colonies and their nest

  contents from colony founding until death, Insectes Sociaux 63: 553–563;

  and on data collected (but not reported) in Seeley, T. D., 2017, Life-

  Seeley.indb 343

  2/21/2019 8:08:05 AM

  344 Illustration Credits

  history traits of honey bee colonies living in forests around Ithaca, NY,

  USA, Apidologie 48: 743–754.

  Fig. 5.14. Original drawing by Margaret C. Nelson, based on figure in

  Pratt, S. C., 1998, Decentralized control of drone comb construction

  in honey bee colonies, Behavioral Ecology and Sociobiology 42: 193–205.

  Fig. 5.15. Photo by Kenneth Lorenzen.

  Fig. 5.16. Original drawing by Margaret C. Nelson, based on data in

  Nakamura, J., and T. D. Seeley, 2006, The functional organization of

  resin work in honeybee colonies, Behavioral Ecology and Sociobiology 60:

  339–349.

  Fig. 6.1. Photo by Zachary Huang, beetography.com.

  Fig. 6.2. Original drawing by Margaret C. Nelson, based on fig. 4.1 in

  Seeley, T. D., 1985. Honeybee Ecology, Princeton University Press, Prince-

  ton, New Jersey.

  Fig. 6.3. Photo by Kenneth Lorenzen.

  Fig. 6.4. Original drawing by Margaret C. Nelson, based on fig. 4.2 in

  Seeley, T. D., 1985, Honeybee Ecology, Princeton University Press, Prince-

  ton, New Jersey.

  Fig. 6.5. Original drawing by Margaret C. Nelson, based on data in fig. 3

  in Smith, M. L., M. M. Ostwald, and T. D. Seeley, 2016, Honey bee

  socio metry: Tracking honey bee colonies and their nest contents from

  colony founding until death, Insectes Sociaux 63: 553–563.

  Fig. 7.1. Photo by Kenneth Lorenzen.

  Fig. 7.2. Original drawing by Margaret C. Nelson, based on fig. 2 in Page,

  R. E., Jr., 1981, Protandrous reproduction in honey bees, Environmental

  Entomology 10: 359–362.

  Fig. 7.3. Photos by Michael L. Smith.

  Fig. 7.4. Original drawing by Margaret C. Nelson.

  Fig. 7.5. Photo by Thomas D. Seeley.

  Fig. 7.6. Photo by Megan E. Denver.

  Fig. 7.7. Original drawing by Margaret C. Nelson.

  Fig. 7.8. Photo by Alex Wild.

  Fig. 7.9. Original drawing by Margaret C. Nelson, based on fig. 2 in Rangel,

  Seeley.indb 344

  2/21/2019 8:08:05 AM

  Illustration Credits 345

  J., H. K. Reeve, and T. D. Seeley, 2013, Optimal colony fissioning in

  social insects: Testing an inclusive fitness model with honey bees, Insectes

  Sociaux 60: 445–452.

  Fig. 7.10. Original drawing by Margaret C. Nelson, based on fig. 2 in

  Ruttner, F., and H. Ruttner, 1966, Untersuchungen über die Flugaktivität

  und das Paarungsverhalten der Drohnen. 3. Flugweite and Flugrichtung

  der Drohnen, Zeitschrift für Bienenforschung 8: 332–354.

  Fig. 7.11. Original drawing by Margaret C. Nelson.

  Fig. 7.12. Original drawing by Margaret C. Nelson, based on data in Tarpy,

  D. R., D. A. Delaney, and T. D. Seeley. 2015. Mating frequencies of

  honey bee queens ( Apis mellifera L.) in a population of feral colonies in

  the northeastern United States. PLoS ONE 10 (3): e0118734.

  Fig. 8.1. Photo by Alex Wild.

  Fig. 8.2. Original drawing by Margaret C. Nelson.

  Fig. 8.3. Photo by Kenneth Lorenzen.

  Fig. 8.4. Photo by Alex Wild.

  Fig. 8.5. Original drawing by Margaret C. Nelson.

  Fig. 8.6. Original drawings by Margaret C. Nelson. Top: based on data in

  fig. 5 in Visscher, P. K., and T. D. Seeley, 1982, Foraging strategy of

  honeybee colonies in a temperate deciduous forest, Ecology 63: 1790–

  1801. Bottom: based on data in table 13 in von Frisch, K., 1967, The

  Dance Language and Orientation of Bees, Harvard University Press,

  Cambridge, Massachusetts.

  Fig. 8.7. Top: photo by Thomas D. Seeley. Bottom: original drawing by

  Margaret C. Nelson.

  Fig. 8.8. Original drawing by Margaret C. Nelson, based on data in fig. 3

  in Visscher, P. K., and T. D. Seeley, 1982, Foraging strategy of honeybee

  colonies in a temperate deciduous forest, Ecology 63: 1790–1801.

  Fig. 8.9. Original drawing by Margaret C. Nelson, based on fig. 1 in Seeley,

  T. D., S. Camazine, and J. Sneyd, 1991, Collective decision- making in

  honey bees: How colonies choose among nectar sources, Behavioral

  Ecology and Sociobiology 28: 277–290.

  Fig. 8.10. Original drawing by Margaret C. Nelson, based on fig. 3 in Peck,

  Seeley.indb 345

  2/21/2019 8:08:05 AM

  346 Illustration Credits

  D. T., and T. D. Seeley, forthcoming, Robbing by honey bees in forest

  and apiary settings: Implications for horizontal transmission of the mite

  Varroa destructor, Journal of Insect Behavior.

  Fig. 9.1. Original drawing by Margaret C. Nelson, based on part E of fig.

  5 in Owens, C. D., 1971, The thermology of wintering honey bee

  colonies, Technical Bulletin, United States Department of Agriculture 1429:

  1–32.

  Fig. 9.2. Photo by Jürgen Tautz.

  Fig. 9.3. Original drawing by Margaret C. Nelson, based on fig. 3 in Starks,

  P. T., C. A. Blackie, and T. D. Seeley, 2000, Fever in honeybee colonies,

  Naturwissenschaften 87:
229- 231.

  Fig. 9.4. Original drawing by Margaret C. Nelson, based on part A of fig.

  5 in Owens, C. D., 1971, The thermology of wintering honey bee

  colonies, Technical Bulletin, United States Department of Agriculture 1429:

  1–32.

  Fig. 9.5. Original drawing by Margaret C. Nelson, based on fig. 3 in

  Mitchell, D., 2016, Ratios of colony mass to thermal conductance of

  tree and man- made nest enclosures of Apis mellifera: Implications for

  survival, clustering, humidity regulation and Varroa destructor,

  International Journal of Biometeorology 60: 629–638.

  Fig. 9.6. Top: photos by Robin Radcliffe. Bottom: original drawing by

  Margaret C. Nelson.

  Fig. 9.7. Original drawing by Margaret C. Nelson, based on fig. 2 in

  Southwick, E. E., 1982, Metabolic energy of intact honey bee colonies,

  Comparative Biochemistry and Physiology 71: 277–281.

  Fig. 9.8. Top: Photo by Thomas D. Seeley. Bottom: Original drawing by

  Margaret C. Nelson, based on fig. 1 in Peters, J. M., O. Peleg, and

  L. Mahadevan, 2019. Collective ventilation in honeybee nests, Journal

  of the Royal Society Interface 16: 20180561.doi.org/10.1098/rsif.2018

  .0561.

  Fig. 9.9. Photo by Linton Chilcott.

  Fig. 9.10. Original drawing by Margaret C. Nelson, based on fig. 3 in

  Ostwald, M. M., M. L. Smith, and T. D. Seeley, 2016, The behavioral

  Seeley.indb 346

  2/21/2019 8:08:05 AM

  Illustration Credits 347

  regulation of thirst, water collection and water storage in honey bee

  colonies, Journal of Experimental Biology 219: 2156–2165.

  Fig. 10.1. Original drawing by Margaret C. Nelson, based on fig. 1 in

  Rinderer, T. E., L. I. de Guzman, G. T. Delatte, J. A. Stelzer, and 5 more

  authors, 2001, Resistance to the parasitic mite Varroa destructor in honey

  bees from far- eastern Russia, Apidologie 32: 381–394.

  Fig. 10.2. Photo by Åke Lyberg.

  Fig. 10.3. Original drawing by Margaret C. Nelson, based on figs. 1, 2, and

  3 and on data in table 1 in Fries, I., A. Imdorf, and P. Rosenkranz, 2006,

  Survival of mite infested ( Varroa destructor) honey bee ( Apis mellifera)

  colonies in a Nordic climate, Apidologie 37: 564–570.

  Fig. 10.4. Aerial photo from Google Earth, with locations of wild honey

  bee colonies added by Thomas D. Seeley.

  Fig. 10.5. Original drawing by Margaret C. Nelson, based on fig. 3 in

  Mikheyev, A. S., M.M.Y. Tin, J. Arora, and T. D. Seeley, 2015, Museum

  samples reveal rapid evolution by wild honey bees exposed to a novel

  parasite, Nature Communications 6: 7991, doi:10.1038/ncomms8991.

  Fig. 10.6. Original drawing by Margaret C. Nelson, based on fig. 1 in

  Seeley, T. D., and M. L. Smith, 2015, Crowding honeybee colonies in

  apiaries can increase their vulnerability to the deadly ectoparasitic mite

  Varroa destructor, Apidologie 46: 716–727.

  Fig. 10.7. Photo by Thomas D. Seeley.

  Fig. 10.8. Original drawing by Margaret C. Nelson, based on fig. 1 and fig.

  3 in Loftus, J. C., M. L. Smith, and T. D. Seeley, 2016, How honey bee

  colonies survive in the wild: Testing the importance of small nests and

  frequent swarming, PLoS ONE 11 (3): e0150362, doi:10.1371/journal.

  pone.0150362.

  Fig. 10.9. Photos by Thomas D. Seeley.

  Fig. 10.10. Photo by Renata S. Borba.

  Fig. 10.11. Original drawing by Margaret C. Nelson, based on fig. 3 in

  Borba, R. S., K. K. Klyczek, K. L. Mogen, and M. Spivak, 2015, Seasonal

  benefits of a natural propolis envelope to honey bee immunity and

  colony health, Journal of Experimental Biology 218: 3689–3699.

  Seeley.indb 347

  2/21/2019 8:08:05 AM

  Seeley.indb 348

  2/21/2019 8:08:05 AM

  Index

  Acarapis woodi. See tracheal mites

  bee space, 74–77

  Aethina tumida. See small hive beetle

  beekeeping: in antiquity, 62–63; Egyptian,

  afterswarming, 162–164

  64–65; movable-frame hive, 73–78;

  American foulbrood, 87–90, 244, 259, 273

  Roman, 64–66; skep, 69–72; tree

  ancestry of honey bees, 57

  (Zeidlerei), 66–69; tools of modern, 98

  annual cycle: of colony food intake and con-

  Beekman, Madeleine, 201

  sumption, 142–146; of colony weight gains

  beeswax: ancient, 5, 80; economy of use by

  and losses, 143–146; of honey bee vs. bum-

  bees, 124–131; harvesting of, 284; impor-ble bee colonies, 152–154; origins and evo-

  tance in tree beekeeping, 68–69; produc-

  lution, 152–154; of rearing drones, 157–

  tion by bees, 121–123, 284–285

  158; of rearing workers, 141–142,

  Berry, Wendell, 2

  146–152, 278–280; of swarming, 145,

  black bears, 54–55, 116, 185, 271–273

  149–152, 158

  Bombus polaris, 153

  antibiotics, 284

  breeding of honey bees, 86–93

  Apis cerana, 13, 245–246

  brood rearing: annual total amount, 159, 172,

  Apis henshawi, 57–59

  193; importance of early onset, 151–152;

  Apis mellifera: capensis, 82–84; carnica, 6, 9–12,

  seasonal pattern of, 148–152

  35, 117; caucasica, 6, 9–11; cypria, 9; inter-Brown, Mark J. F., 270

  missa, 9; lamarckii, 9, 35; ligustica, 6, 9–12,

  35, 117; macedonica, 6; mellifera, 5–12, 35,

  carbon dioxide, stimulus for nest ventilation,

  278–280; scutellata, 9–11, 33–35; syriaca,

  235–236

  9; yemenetica, 10–11

  Chadwick, P. C., 236

  Arnot Forest: bee foraging in, 197–200, 205–

  chalkbrood, 89–91, 109, 210, 222–223, 244,

  206; bee hunting in, 48–51, 103; descrip-

  273, 282

  tion of, 26–28; history of, 18–20; map of,

  Chilcott, Ann B., 238

  27, 32, 51, 184; mechanisms of Varroa resis-chill coma, 223–224, 270

  tance of bees living in, 252–258; natural se-

  Cingle de la Ermita del Barranc Fondo,

  lection on bees living in, 255–257; pres-

  60–61

  ence of black bears in, 54–55, 271–273;

  clustering colonies in apiaries: causes, 258–

  presence of Varroa in, 51–54, 205–206

  259; effects, 259–263, 280

  artificial insemination, 16, 85–93, 295

  Columella, Lucius J. M., 64–66

  artificial selection. See breeding of honey bees

  comb: building, 96–97, 105–106, 120–135;

  Ascosphaera apis. See chalkbrood

  cell size, 108, 269; cell size effects on Var-

  roa mites, 269–270; contents over year,

  bait hives, 52–53, 55, 112, 289

  150–151; for drone rearing, 108, 132–135;

  Bashkortostan, Republic of, 7, 25, 68–69

  foundation, 96–97

  bee hunting (bee lining), 28–31

  Cordovan mutation, 260–262

  Seeley.indb 349

  2/21/2019 8:08:05 AM

  350 Index

  Cranberry Lake Biological Station, 206–209

  European foulbrood, 109

  Crane, Eva, 64

  evaporative cooling. See temperature control

  crowding of colonies. See clustering of colo-
>
  of broodnest

  nies in apiaries

  Cueva de la Araña, 60–61

  fanning behavior, 234–237

  Cullinan, Jenny, 82

  Farrar, Clayton L., 144

  fever response of colony, 222–223

  dairy cows, 85–86

  field crickets, 14

  Darwin, Charles R., 99

  flight muscles of worker bees, 217–219, 223

  Darwinian beekeeping, 3, 277–292

  flight range: of queens and drones, 38, 179–

  deformed wing virus, 42, 48, 244–245, 259

  182; of worker bees, 187, 195–196,

  Delaney, Deborah A., 183–185, 253–254

  199–200

  density of wild colonies, 24–26, 35–41, 202

  food collection by colony: forage types, 188–

  diseases of honey bees. See American foul-

  190; spatial scope of, 195–201; total brood; chalk brood; deformed wing virus;

  amount for year, 191–195

  European foulbrood; sacbrood; tracheal

  food sources: colony’s skill in choosing

  mite; Varroa destructor

  among, 204–209; colony’s skill in finding,

  domestication: of Apis mellifera, 80–82, 93–

  201–204; distances to, 187, 195–201

  97; general process, 79–80

  fossil honey bees, 57–59

  Doolittle, Gilbert M., 87

  Fries, Ingemar, 247, 251

  drifting, of bees between colonies, 259–263,

  Frost, Robert, 140

  287

  fungicides, 279, 283, 288–289

  drone comb: cell size, 133; control of build-

  ing, 132–135; control of use for drone

  Galleria mellonella. See wax moth

  rearing, 159–161; percentage of comb

  Galton, Dorothy, 24–25

  area, 52, 108–109, 122, 132–133,

  Gary, Norman E., 178, 196

  279–281

  Gibbons, Euell, 57

  drone congregation area, 39, 178–181, 186

  Gilley, David C., 163–164

  drones: cost of feeding, 174; drifting among

  Gotland, 247–252, 289

  colonies, 260–263, 287; importance of, Griffin, Sean R., 183, 253, 269–270

  86–87, 155–157, 182–183, 290; killing of, grooming behavior, for resistance to Varroa de-

  66; level of production, 158–159, 171–

  structor, 246, 257–258

  173; mating behavior, 285; mating flight

  range, 178–182; number in colony, 109,

  Hainrich Forest, 38

  128; timing of production, 150–151, 157–

  Harz National Park, 37

  158; use in estimating colony density,

  Haudenosaunee, 19

 

‹ Prev